

AGENCE NATIONALE DE L'AVIATION CIVILE ET DE LA METEOROLOGIE

BP.8184 AEROPORT L.S. SENGHOR Tel: (+221) 33 865 60 00 – 33 820 04 03 Email: <u>anacim@anacim.sn</u>

REGLEMENTS AERONAUTIQUES DU SENEGAL N°10 (RAS 10)

TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Première Edition Janvier 2016

AGENCE NATIONALE DE L'AVIATION CIVILE ET DE LA METEOROLOGIE

BP.8184 AEROPORT L.S. SENGHOR Tel: (+221) 33 865 60 00 – 33 820 04 03 Email : <u>anacim@anacim.sn</u>

REGLEMENTS AERONAUTIQUES DU SENEGAL N° 10 (RAS 10)

TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Première Edition Janvier 2016

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Amend/Rectifs Edition : Date Page 1 de 1 1

Janvier 2016

INSCRIPTION DES AMENDEMENTS ET DES RECTIFICATIFS

	AMENDEMENTS				
N°	Applicable le	Inscrit le	Par		
01	Ne s'applique pas au Volume IV	Ne s'applique pas au Volume IV	ANACIM		
02	08/11/2018	17/08/2018	ANACIM		
03	03/11/2022	19/09/2022	ANACIM		

RECTIFICATIFS				
N°	Date de publication	Inscrit le	Par	
	-			

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Historique Edition : Date Page 1 de 1

Janvier 2016

HISTORIQUE DES AMENDEMENTS

Amendement No.	Origine	Object	Dates : - adoption - entrée en vigueur - application
	nents de la circu	NACS/DG/CJ du 19/01/2006 fixant les modalités lation aérienne, le RAS 15, portant sur les Téléco	
1 ^{ère} Edition du RAS 15	AEROTECH	Rédaction initiale du RAS 15 en un seul document résumant les cinq (5) volumes de l'Annexe 10	- 01/09/2008 - 01/09/2008 - 01/09/2008
2 ^{ème} Edition	CARAS	Rédaction initiale du RAS 15, Volume IV, Inclusion des amendements 1 à 87 de l'OACI à l'Annexe 10, Volume IV.	- 30/09/2013 - 30/09/2013 - 30/09/2013
du RAS 15	OACI	Note : Les Amendements 88-A et 88-B de l'OACI à l'Annexe 10 ne s'appliquent pas au Volume IV.	
Par Arrêté No.0)3038/MTTA/AN	ACIM/DG du 29/02/2016 le RAS 15 a été dénom	nmé RAS 10 et approuvé.
1 ^{ère} Edition du RAS 10	CARAS OACI	Introduction de l'amendement N° 89 de l'OACI à l'Annexe 10. Insertion des spécifications Radar Mode S, Squitters longs Mode S (ADS-B, TIS-B).	- 09/03/2016 - 09/03/2016 - 25/04/2016
		Mise en forme juridique des spécifications	- 14/02/2017 - 14/02/2017 - 01/03/2017
Amendement 1		L'amendement 1 du RAS 10 ne s'applique pas au Volume IV	
		Introduction de l'amendement N° 90 de l'OACI à l'Annexe 10, Volume IV :	- 17/08/2018
Amendement 2	OACI	 a) système anticollision embarqué (ACAS); et b) radar secondaire de surveillance (SSR). 	- 17/08/2018 - 17/08/2018 - 08/11/2018
Amendement 3	OACI	Introduction de l'amendement N° 91 de l'OACI à l'Annexe 10, Volume IV, portant sur: le nouveau système anticollision embarqué X (ACAS X); et une disposition visant à réduire le nombre de fausses alertes ACAS.	- 19/09/2022 - 19/09/2022 - 03/11/2022

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Références Edition :

Date

Page 1 de 1

Janvier 2016

LISTE DES REFERENCES

- 1. Règlements aéronautiques du Sénégal No.10 (RAS 10), Volume IV, Première édition, janvier 2016,
- 2. Annexe 10, Volume IV, cinquième édition, juillet 2014, (Amendement 91).

RAS 10

TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Liste abréviations

Page 1 de 2

Edition : Date

Janvier 2016

SIGLES ET ABRÉVIATIONS

ACAS système anticollision embarqué (airborne collision avoidance system)

ADLP processeur de liaison de données embarqué (airborne data link processor)

ADS-B surveillance dépendante automatique en mode diffusion (automatic dependent surveillance — broadcast)

ADS-R surveillance dépendante automatique en mode rediffusion (automatic dependent surveillance — rebroadcast)

AF champ adresse (address field)

alt. baro altitude barométrique (barometric altitude)

ANP qualité de navigation réellement atteinte (actual navigation performance)

ATN réseau de télécommunications aéronautiques (aeronautical telecommunication network)

ATS sous-champ type d'altitude (altitude type subfield)

A/V aéronef/véhicule (aircraft/vehicle)

BDS sélecteur de données Comm-B (Comm-B data selector)
BITE équipement d'essai intégré (built-in test equipment)

CFDIU unité d'interface de visualisation centralisée des défaillances (centralized fault display interface unit)

CPR compression des comptes rendus de position (compact position reporting)

DAP paramètres d'aéronef en liaison descendante (downlink aircraft parameters)

ELM message étendu (extended length message)

EPU incertitude sur la position estimée (estimated position uncertainty)

ES squitter long (extended squitter)

ETTD équipement terminal de traitement de données

FCC ordinateur de commande de vol (flight control computer)

FCU module de commande de vol (flight control unit)

FDE détection et élimination d'erreurs (fault detection and exclusion)

FL niveau de vol (flight level)

FMS système de gestion de vol (flight management system)

ft pied(s) (foot/feet)

GDLP processeur de liaison de données sol (ground data link processor)
GFM formateur/gestionnaire général (general formatter/manager)
GICB Comm. B. déclenché au sol (ground initiated Comm. B)

GICB Comm-B déclenché au sol (ground-initiated Comm-B)

GNSS système mondial de navigation par satellite (global navigation satellite system)

GPS système mondial de localisation (global positioning system)

GVA précision géométrique verticale (geometric vertical accuracy) HAE

hauteur au-dessus de l'ellipsoïde (height above the ellipsoid) HAG

hauteur au-dessus du géoïde (height above the geoid)

HFOM_R indice de qualité horizontal de la vitesse (horizontal figure of merit forvelocity)

HIL limite d'intégrité horizontale (horizontal integrity limit)
HPL limite de protection horizontale (horizontal protection limit)
HRD direction de référence horizontale (horizontal reference direction)

II identificateur d'interrogateur (interrogatoridentifier)

IMF drapeau OACI/mode A (ICAO/Mode A flag)

kt nœud (knot)
lat/lon latitude/longitude

LSB bit de poids faible (least significant bit)

MA message, Comm-A

MASPS norme de performances minimales de système d'aviation (minimum aviation system performance standard)

MB message, Comm-B MC message, Comm-C

RAS 10

TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Liste abréviations

Date

Page 2 de 2

Edition :

Janvier 2016

MCP tableau de commande de mode (mode control panel)

MD message, Comm-D

min minute

MOPS normes de performances opérationnelles minimales (minimum operational performance standards)

MSB bit de poids fort (most significant bit)
MSL niveau moyen de la mer (mean sea level)

MSP protocole spécifique mode S (Mode S specific protocol)

MSSS services spécifiques mode S (Mode S specific services)

NAC_P catégorie de précision de navigation — position (navigational accuracy category — position)
NAC_V catégorie de précision de navigation — vitesse (navigational accuracy category — velocity)

NIC catégorie d'intégrité de navigation (navigation integrity category)

NM mille marin (nautical mile)

NUC_P catégorie d'incertitude de navigation — position (navigational uncertainty category — position)
NUC_R catégorie d'incertitude de navigation — cadence (navigational uncertainty category — rate)

OCC capacité de commande de superposition (overlay command capability)

OM mode opérationnel (operational mode)

RAT fin d'avis de résolution (resolution advisory termination)

R_C rayon de confinement (radius of containment)

RNP qualité de navigation requise (required navigation performance)

s seconde(s)

SAF drapeau d'antenne unique (single antenna flag)

SARP normes et pratiques recommandées (Standards and Recommended Practices)
SCS sous-champ capacité en matière de squitters (squitter capability subfield)

SDA confiance pouvant être accordée à la conception du système (system design assurance)

SI identificateur de surveillance (surveillance identifier)

SIC capacité en matière d'identificateur de surveillance (surveillance identifier capability)

SIL niveau d'intégrité de la surveillance (surveillance integrity level) (version 1 du squitter long (ES) 1090,

première édition, Doc 9871, Appendice B)

SIL niveau d'intégrité de la source (source integrity level) (version 2 du squitter long (ES) 1090, deuxième

édition, Doc 9871, Appendice C)

SLM message de longueur standard (standard length message)

SPI impulsion spéciale d'identification de position (special position identification)
SSE entité de services spécifiques mode S (Mode S specific services entity) SSM

matrice d'état/de signe (sign/status matrix)

SSR radar secondaire de surveillance (secondary surveillance radar)

SVID identificateur du volume de service (service volume ID)
TIS service d'information sur le trafic (traffic information service)

TIS-B service d'information sur le trafic en mode diffusion (traffic information service — broadcast)

TOMR temps de réception du message (time of message receipt)
TRS sous-champ cadence d'émission (transmission rate subfield)
UAT émetteur-récepteur universel (universal access transceiver)
UTC temps universel coordonné (coordinated universal time)

VEPU incertitude sur la position verticale estimée (vertical estimated position uncertainty)

VFOM_R indice de qualité vertical de la vitesse (vertical figure of merit for velocity)

VPL limite de protection verticale (vertical protection limit)

WAAS système de renforcement à couverture étendue (wide area augmentation system)

RAS 10

TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Table des matières

Edition : Date Page 1 de 2

Janvier 2016

TABLE DES MATIERES

	rage
CHAPITRE 1. DEFINITIONS	1-1
CHAPITRE 2. GENERALITES	2-1
2.1 RADAR SECONDAIRE DE SURVEILLANCE (SSR)	2-1
2.1.2 Modes d'interrogation (dans le sens sol-air)	2-1
2.1.3 Modes de réponse du transpondeur (dans le sens air-sol)	2-2
2.1.4 Mode A — Codes de réponse (impulsions d'information)	2-3
2.1.5 Possibilités de l'équipement embarqué mode S	2-4
2.1.6 Adresse SSR mode S (adresse d'aéronef)	2-7
2.2 CONSIDERATIONS RELATIVES AUX FACTEURS HUMAINS	2-7
CHAPITRE 3. SYSTEMES DE SURVEILLANCE	3-1
3.1 CARACTERISTIQUES DU SYSTEME RADAR SECONDAIRE DE SURVEILLANCE (SSR)	3-1
3.1.1 SYSTEMES FONCTIONNANT SEULEMENT EN MODE A ET EN MODE C	3-1
3.1.2 SYSTEMES FONCTIONNANT EN MODE S	3-11
APPENDICE AU CHAPITRE 3	3-101
Code SSR pour la transmission automatique de l'altitude-pression	3-101
(Positions attribuées aux impulsions)	3-101
CHAPITRE 4. SYSTEME ANTICOLLISION EMBARQUE	4-1
4.1 DEFINITIONS RELATIVES AU SYSTEME ANTICOLLISION EMBARQUE	
4.2 ACAS I DISPOSITIONS GENERALES ET CARACTERISTIQUES [Réservé]	
4.3 ACAS II ET ACAS III — DISPOSITIONS GENERALES	
4.3.1 Spécifications fonctionnelles	4-5
4.3.2 Spécifications de performances de surveillance	4-5
4.3.3 Avis de circulation (TA)	4-9
4.3.4 Détection des menaces	4-10 4-12
4.3.5 Avis de résolution (RA)4.3.6 Coordination et communication	4-12 4-15
4.3.7 Protocoles ACAS	4-13 4-18
4.3.8 Formats de signal	4-21
4.3.9 Caractéristiques de l'équipement ACAS	4-45
4.3.10 Contrôle	4-46
4.3.11 Spécifications relatives à un transpondeur mode S utilisé avec l'ACAS	4-47
4.3.12 Indications destinées à l'équipage de conduite	4-49
4.4 PERFORMANCE DE LA LOGIQUE ANTICOLLISION DE L'ACAS II	4-49
4.4.1 Définitions relatives à la performance de la logique anticollision	4-49
4.4.2 Conditions d'application des exigences formulées	4-50
4.4.3 Réduction du risque de collision	4-63
4.4.4 Compatibilité avec la gestion du trafic aérien (ATM)	4-63
4.5 UTILISATION DU SQUITTER LONG PAR L'ACAS	
4.5.1 Surveillance hybride ACAS à l'aide de données de position sur squitter long4.5.2 Utilisation de l'ACAS avec un niveau minimal de déclenchement (MTL) de récepteu	4-65
[Réservé]	4-2
CHAPITRE 5 SOUITTER LONG MODE S	5-1

RAS 10

TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Table des matières

Edition:

Page 2 de 2 1

Date Janvier 2016

5.1 CARACTERISTIQUES DU SYSTEME D'EMISSION DE SQUITTERS LONGS MODE S 5.1.1 ADS-B émission	5-1 5-1
5.1.2 TIS-B émission [Non applicable]	5-6
5.2 CARACTERISTIQUES DES SYSTEMES DE RECEPTION DE SQUITTERS LONGS MODE RECEPTION)	S (ADS-E
5.2.1 Spécifications fonctionnelles des systèmes de réception de squitters longs mode S 5.2.2 Fonction d'échange de messages 5.2.3 Fonction d'assembleur de compte rendu 5.2.4 Interopérabilité	5-6 5-8 5-9 5-12
CHAPITRE 6. Systèmes de multilatération [Réservé]	6-1
CHAPITRE 7. SPECIFICATIONS TECHNIQUES POUR LES APPLICATIONS DE SURVE	EILLANCE
EMBARQUEE	7-1
7.1 SPECIFICATIONS GENERALES	7-1
7.1.1 Fonctions de données de trafic	7-1
7.1.2 Affichage des données de circulation	7-1

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 1 Edition: Date

Page 1 de 2

Janvier 2016

SPECIFICATIONS

CHAPITRE 1. **DEFINITIONS**

Note 1.— Partout dans le présent RAS, « Règlement des radiocommunications » désigne le Règlement des radiocommunications publié par l'Union internationale des télécommunications (UIT). Le Manuel relatif aux besoins de l'aviation civile en matière de spectre radioélectrique — Enoncés de politique approuvés de l'OACI (Doc 9718) contient d'autres renseignements sur les processus de l'UIT relatifs à l'emploi des fréquences radioélectriques par les systèmes aéronautiques.

Note 2.— Le système de squitter long mode S est soumis aux droits de brevet que détient le Lincoln Laboratory du Massachusetts Institute of Technology (MIT). Le 22 août 1996, le Lincoln Laboratory du MIT a publié un avis dans le Commerce Business Daily (CBD), une publication du Gouvernement des États-Unis, notifiant son intention de ne pas se prévaloir de ses droits en tant que titulaire du brevet à l'égard de toute personne faisant un usage commercial ou non commercial du brevet, afin de promouvoir la plus grande généralisation possible de l'emploi de la technique du squitter long mode S. En outre, dans la lettre qu'il a envoyée à l'OACI le 27 août 1998, le Lincoln Laboratory du MIT a confirmé que l'avis publié dans le CBD a pour but de fournir la déclaration demandée par l'OACI concernant les droits de brevet applicables aux techniques employées dans les SARP et que les titulaires du brevet offrent cette technique gratuitement quel qu'en soit l'usage.

Adresse d'aéronef. Combinaison unique de 24 bits, pouvant être assignée à un aéronef aux fins de communications air-sol, de navigation et de surveillance.

Note.— Les transpondeurs SSR mode S utilisent les squitters longs pour la diffusion, à des fins de surveillance, des données de position calculées à bord de l'aéronef. La diffusion de cette information est une forme de surveillance dépendante automatique (ADS) appelée ADS en mode diffusion (ADS-B).

- Logique anticollision. Le sous-système ou la partie de l'ACAS qui analyse les données relatives à un intrus et à l'aéronef de référence, qui décide s'il y a ou non lieu à avis et, dans l'affirmative, lance ces avis. Il assure les fonctions suivantes : poursuite en distance et en altitude, détection de menace et lancement d'avis de résolution (RA). Il exclut la surveillance.
- Occupation du transpondeur. État d'indisponibilité du transpondeur entre le moment où il détecte l'arrivée d'un signal qui semble déclencher une action, ou le moment où il déclenche lui-même une émission, et le moment où il est en mesure de répondre à une autre interrogation.
- Note.— Des indications sur les signaux des divers systèmes qui contribuent à l'occupation d'un transpondeur figurent à l'Appendice M du Manuel de surveillance aéronautique (Doc 9924).
- Principes des facteurs humains. Principes qui s'appliquent à la conception, à la certification, à la formation, aux opérations et à la maintenance et qui visent à assurer la sécurité de l'interface entre l'être humain et les autres composantes des systèmes par une prise en compte appropriée des performances humaines.
- Radar de surveillance. Équipement radar utilisé pour déterminer la position d'un aéronef en distance et en azimut.
- Radar secondaire de surveillance (SSR). Dispositif radar de surveillance utilisant des émetteurs/récepteurs (interrogateurs) et des transpondeurs.

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 1 Edition : Date

Page 2 de 2

Janvier 2016

Note.— Les caractéristiques des interrogateurs et des transpondeurs sont spécifiées au Chapitre 3.

- Service d'information sur le trafic en mode diffusion (TIS-B) émission. Fonction sol qui diffuse périodiquement les informations de surveillance mises à disposition par des capteurs au sol dans un format convenant aux récepteurs possédant une capacité TIS-B réception.
- Note.— Cette technique peut utiliser différentes liaisons de données. Les spécifications relatives aux squitters longs mode S figurent au Chapitre 5. Les spécifications relatives à la liaison numérique VHF (VDL) mode 4 et à l'émetteur-récepteur universel (UAT) figurent à l'Annexe 10, Volume III, Partie 1.
- **Service d'information sur le trafic en mode diffusion (TIS-B) réception.** Fonction de surveillance qui reçoit et traite des données de surveillance provenant de sources de données TIS-B émission.
- Surveillance dépendante automatique en mode diffusion (ADS-B) émission. Fonction embarquée sur un aéronef ou un véhicule qui diffuse périodiquement le vecteur d'état (position et vitesse) et d'autres informations provenant de systèmes de bord, dans un format convenant aux récepteurs possédant une capacité ADS-B réception.
- Surveillance dépendante automatique en mode diffusion (ADS-B) réception. Fonction qui reçoit les données de surveillance provenant de sources de données ADS-B émission.
- **Système anticollision embarqué (ACAS).** Système embarqué qui, au moyen des signaux du transpondeur de radar secondaire de surveillance (SSR) et indépendamment des systèmes sol, renseigne le pilote sur les aéronefs dotés d'un transpondeur SSR qui risquent d'entrer en conflit avec son aéronef.

Note.— Les transpondeurs SSR visés ci-dessus sont ceux qui fonctionnent en mode C ou en mode S. Pour améliorer sa performance, l'ACAS peut aussi utiliser les signaux de surveillance dépendante automatique en mode diffusion (ADS-B) reçus d'autres aéronefs.

Amendement 3 03/11/2022

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 2 Edition : Date

Page 1 de 8

Janvier 2016

CHAPITRE 2. GENERALITES

2.1 RADAR SECONDAIRE DE SURVEILLANCE (SSR)

2.1.1 Les fournisseurs de services de navigation aérienne doivent s'assurer que tout radar secondaire de surveillance installé et maintenu en service comme aide des services de la circulation aérienne est conforme au § 3.1, sauf dispositions contraires spécifiées dans le présent § 2.1.

Note.— Comme il est indiqué dans le présent RAS, les transpondeurs modes A/C sont ceux qui possèdent les caractéristiques prescrites au § 3.1.1. Les transpondeurs mode S sont ceux qui possèdent les caractéristiques prescrites au § 3.1.2. Les possibilités fonctionnelles des transpondeurs modes A/C font partie intégrante des possibilités des transpondeurs mode S.

2.1.2 Modes d'interrogation (dans le sens sol-air)

- 2.1.2.1 L'interrogation doit être assurée, pour les besoins des services de la circulation aérienne, dans les modes décrits aux § 3.1.1.4.3 ou 3.1.2. Chacun de ces modes doit servir aux opérations :
 - 1) *Mode A* déclencher des réponses de transpondeurs aux fins d'identification et de surveillance.
 - 2) *Mode C* déclencher des réponses de transpondeurs aux fins de transmission automatique de l'altitude-pression et de surveillance.
 - 3) Intermodes
 - a) Appel général modes A/C/S : déclencher des réponses aux fins de surveillance des transpondeurs modes A/C et d'acquisition des transpondeurs mode S.
 - b) Appel général modes A/C seulement : déclencher des réponses aux fins de surveillance des transpondeurs modes A/C. Les transpondeurs mode S ne répondent pas.
 - 4) Mode S
 - a) Appel général mode S seulement : déclencher des réponses aux fins d'acquisition des transpondeurs mode S.
 - b) Interrogation diffusée : transmettre des informations à tous les transporteurs mode S. Ne déclenche pas de réponse.
 - c) Interrogation sélective : surveiller les différents transpondeurs mode S et communiquer avec eux. Chaque interrogation déclenche une réponse du seul transpondeur auquel elle s'adresse de façon unique.
- Note 1.— Les émissions des transpondeurs modes A/C sont supprimées par les interrogations mode S et, de ce fait, ces transpondeurs ne répondent pas.
- Note 2.— Il existe 25 formats (montants) possibles d'interrogation mode S et 25 formats (descendants) possibles de réponse mode S. Pour l'attribution des formats, voir § 3.1.2.3.2, Figures 3-7 et 3-8.
- 2.1.2.1.1 Les fournisseurs de services de navigation aérienne peuvent coordonner avec les autorités compétentes, nationales et internationales, les aspects de la mise en œuvre du système SSR qui permettent de l'utiliser dans les meilleures conditions.
- Note.— Les fournisseurs de services de navigation aérienne pourront éprouver le besoin d'élaborer des plans coordonnés d'assignation de fréquences de répétition des impulsions (PRF) aux interrogateurs SSR en vue du bon fonctionnement de l'équipement au sol destiné à éliminer le brouillage résultant des réponses de transpondeurs à des interrogateurs adjacents (équipement d'élimination des fausses réponses).
- 2.1.2.1.2 L'assignation des identificateurs d'interrogateur (II), quand elle est nécessaire dans les zones où les couvertures se chevauchent au-dessus de limites internationales de régions d'information de vol, doit faire l'objet d'accords régionaux de navigation aérienne.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 2 Edition : Date

Page 2 de 8

Janvier 2016

2.1.2.1.3 L'assignation de codes d'identificateur de surveillance (SI), quand elle est nécessaire dans les zones où les couvertures se chevauchent, doit faire l'objet d'accords régionaux de navigation aérienne.

Note.— Le verrouillage par le code SI n'est utilisable que si tous les transpondeurs mode S dans la zone de couverture sont équipés pour cela.

- 2.1.2.2 Les interrogations doivent être émises en mode A et en mode C.
- Note.— Cette spécification peut être satisfaite par des interrogations intermodes qui déclenchent des réponses modes A et C de la part des transpondeurs modes A/C.
- 2.1.2.3 Lorsqu'une meilleure identification d'aéronef est nécessaire pour augmenter l'efficacité du système de contrôle de la circulation aérienne, les installations SSR mode S au sol peuvent être dotées de la possibilité d'identifier les aéronefs.
- Note.— L'identification d'aéronef, acheminée sur la liaison de données mode S, assure une identification sans ambiguïté des aéronefs convenablement équipés.
 - 2.1.2.4 INTERROGATION DE COMMANDE DE SUPPRESSION DES LOBES SECONDAIRES
- 2.1.2.4.1 La suppression des lobes secondaires doit être assurée conformément aux dispositions des § 3.1.1.4 et 3.1.1.5, à l'occasion de toutes les interrogations mode A, mode C et intermodes.
- 2.1.2.4.2 La suppression des lobes secondaires doit être assurée conformément aux dispositions du § 3.1.2.1.5.2.1, à l'occasion de toutes les interrogations « appel général mode S seulement ».

2.1.3 Modes de réponse du transpondeur (dans le sens air-sol)

- 2.1.3.1 Les transpondeurs doivent répondre aux interrogations mode A conformément aux dispositions du § 3.1.1.7.12.1, et aux interrogations mode C conformément aux dispositions du § 3.1.1.7.12.2.
- Note.— En l'absence de l'information d'altitude-pression, les transpondeurs répondent aux interrogations mode C par des impulsions d'encadrement seulement.
- 2.1.3.1.1 L'information d'altitude-pression figurant dans les réponses mode S doit être obtenue comme il est spécifié au § 3.1.1.7.12.2.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 2 Page 3 de 8
Edition: 1
Date Janvier 2016

Note.— Le § 3.1.1.7.12.2, qui concerne les réponses mode C, spécifie notamment que les indications d'altitude-pression mode C doivent avoir pour référence le calage normalisé de 1 013,25 hectopascals. Le but du § 2.1.3.1.1 est de faire en sorte que tous les transpondeurs, non seulement les transpondeurs mode C, transmettent une altitude-pression non corrigée.

- 2.1.3.2 Lorsqu'on a déterminé la nécessité de l'utilisation du mode C avec transmission automatique de l'altitude-pression dans une portion déterminée de l'espace aérien, les transpondeurs doivent transmettre comme suite aux interrogations mode C, lorsqu'ils sont utilisés dans l'espace aérien en question, une réponse telle que l'altitude-pression soit codée dans les impulsions d'information.
- 2.1.3.2.1 Tous les transpondeurs, quel que soit l'espace aérien où ils sont utilisés, doivent indiquer l'altitude-pression dans leurs réponses aux interrogations mode C.
- Note.— Pour que le système anticollision embarqué (ACAS) puisse fonctionner, il faut que l'aéronef intrus communique son altitude-pression dans ses réponses mode C.
- 2.1.3.2.2 Dans le cas des aéronefs dotés de sources d'altitude-pression offrant une résolution de 7,62 m (25 ft) ou mieux, l'altitude-pression indiquée par les transpondeurs mode S en réponse à des interrogations sélectives (c.-à-d. dans le champ AC, § 3.1.2.6.5.4) doit être exprimée selon un incrément de quantification de 7,62 m (25 ft).
- Note.— Les performances de l'ACAS sont considérablement améliorées quand l'aéronef intrus communique l'altitude-pression selon un incrément de 7,62 m (25 ft).
- 2.1.3.2.3 Tous les transpondeurs modes A/C doivent transmettre l'altitude-pression sous forme codée dans les impulsions d'information des réponses mode C.
- 2.1.3.2.4 Tous les transpondeurs mode S doivent transmettre l'altitude-pression sous forme codée dans les impulsions d'information des réponses mode C et dans le champ AC des réponses mode S.
- 2.1.3.2.5 Lorsqu'un transpondeur mode S ne reçoit plus aucune information d'altitude-pression provenant d'une source offrant une résolution de 7,62 m (25 ft) ou mieux, la valeur d'altitude indiquée doit être la valeur mesurée de l'altitude-pression non corrigée de l'aéronef exprimée selon un incrément de 30,48 m (100 ft) et le bit Q [voir § 3.1.2.6.5.4, alinéa b)] sera mis à 0.
- Note.— Cette disposition concerne l'installation et l'utilisation des transpondeurs mode S. Le but est de faire en sorte que les données d'altitude provenant de sources offrant une résolution de 30,48 m (100 ft) ne soient pas communiquées au moyen des formats destinés aux valeurs exprimées selon un incrément de 7,62 m (25 ft).
- 2.1.3.3 Les transpondeurs utilisés dans un espace aérien où l'on a déterminé la nécessité d'équipements mode S embarqués doivent également répondre aux interrogations intermodes et mode S conformément aux dispositions applicables du § 3.1.2.
- 2.1.3.3.1 La nécessité de l'emport obligatoire de transpondeurs SSR mode S doit être déterminée par un accord régional de navigation aérienne qui doit également spécifier l'espace aérien et le calendrier de mise en œuvre de l'équipement embarqué.
 - 2.1.3.3.2 L'accord mentionné au § 2.1.3.3.1 peut donner un préavis minimal de cinq ans.

2.1.4 Mode A — Codes de réponse (impulsions d'information)

- 2.1.4.1 Tous les transpondeurs doivent être capables de générer 4 096 codes de réponse conformes aux caractéristiques indiquées au § 3.1.1.6.2.
- 2.1.4.1.1 Les autorités ATS peuvent établir des procédures d'attribution de codes SSR conformes aux accords régionaux de navigation aérienne, compte tenu des autres usagers du système.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 2 Edition : Date

Page 4 de 8

Janvier 2016

Note. — Les principes régissant l'attribution des codes SSR figurent dans le Doc 4444 de l'OACI, Chapitre 8.

- 2.1.4.2 Les codes mode A ci-après doivent être réservés pour des usages spéciaux :
- 2.1.4.2.1 Code 7700 pour permettre de reconnaître un aéronef en cas d'urgence.
- 2.1.4.2.2 Code 7600 pour permettre de reconnaître un aéronef en panne de communications radio.
- 2.1.4.2.3 Code 7500 pour permettre de reconnaître un aéronef qui est l'objet d'une intervention illicite.
- 2.1.4.3 L'équipement sol de décodage doit comporter les caractéristiques nécessaires pour reconnaître immédiatement les codes mode A 7500, 7600 et 7700.
- 2.1.4.4 Le code mode A 0000 peut être attribué pour usage général, sous réserve d'accord régional.
- 2.1.4.5 Le code mode A 2000 doit être utilisé uniquement pour identifier un aéronef qui n'a pas reçu d'un organisme de contrôle de la circulation aérienne l'ordre d'utiliser le transpondeur.

2.1.5 Possibilités de l'équipement embarqué mode S

2.1.5.1 Tous les transpondeurs mode S doivent être conformes à l'un des cinq niveaux suivants :

Note.— Les spécifications relatives aux transpondeurs des moniteurs extérieurs mode S peuvent être différentes de celles qui sont définies pour les transpondeurs mode S ordinaires. Il peut être nécessaire, par exemple, de répondre aux interrogations « appel général » lorsque l'aéronef est au sol. Pour de plus amples renseignements, voir le Manuel de la surveillance aéronautique (Doc 9924), Appendice D.

- 2.1.5.1.1 *Niveau 1* Les transpondeurs de niveau 1 doivent avoir les possibilités spécifiées dans les paragraphes indiqués ci-après :
 - a) transmission de l'identité en mode A et de l'altitude-pression en mode C (§ 3.1.1);
 - b) transactions intermodes et transactions « appel général » mode S (§ 3.1.2.5);
 - c) transactions adressées de surveillance, altitude et identité (§ 3.1.2.6.1, 3.1.2.6.3, 3.1.2.6.5 et 3.1.2.6.7);
 - d) protocoles de verrouillage (§ 3.1.2.6.9);

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 2 Page 5 de 8
Edition: 1
Date Janvier 2016

- e) protocoles de données de base, à l'exception des comptes rendus de possibilités de liaison de données (§ 3.1.2.6.10) ;
- f) transactions de service et de squitters air-air (§ 3.1.2.8).

Note.— Le niveau 1 permet une surveillance SSR fondée sur l'altitude-pression communiquée et sur le code d'identité mode A. Dans un environnement SSR mode S, les performances techniques sont meilleures que celles des transpondeurs modes A/C grâce à la possibilité d'interrogation sélective mode S des aéronefs.

- 2.1.5.1.2 *Niveau 2* Les transpondeurs de niveau 2 doivent avoir les possibilités énumérées au § 2.1.5.1.1, ainsi que celles qui sont spécifiées dans les paragraphes indiqués ci-après :
 - a) communications de longueur standard (Comm-A et Comm-B) (§ 3.1.2.6.2, 3.1.2.6.4, 3.1.2.6.6, 3.1.2.6.8 et 3.1.2.6.11);
 - b) comptes rendus de possibilités de liaison de données (§ 3.1.2.6.10.2.2);
 - c) transmission de l'identification d'aéronef (§ 3.1.2.9);
 - d) parité des données avec commande de recouvrement (3.1.2.6.11.2.5) pour l'équipement certifié le 1^{er} janvier 2020 ou après.

Note.— Le niveau 2 permet de transmettre l'identification d'aéronef, ainsi que d'autres communications de longueur standard sur liaison de données dans les sens sol-air et air-sol. La capacité de transmission de l'identification d'aéronef exige une interface et un dispositif d'insertion approprié.

- 2.1.5.1.3 Niveau 3 Les transpondeurs de niveau 3 doivent avoir les possibilités énumérées au § 2.1.5.1.2, ainsi que celles qui sont spécifiées en ce qui concerne les communications de messages étendus (ELM) dans le sens sol-air (§ 3.1.2.7.1 à 3.1.2.7.5).
- Note.— Le niveau 3 permet des communications de longue durée sur liaison de données dans le sens solair ; il est donc possible d'avoir accès à des banques de données au sol et de recevoir d'autres services de la circulation aérienne qui ne sont pas disponibles lorsqu'on utilise des transpondeurs de niveau 2.
- 2.1.5.1.4 Niveau 4 Les transpondeurs de niveau 4 doivent avoir les possibilités énumérées au § 2.1.5.1.3, ainsi que celles qui sont spécifiées en ce qui concerne les communications de messages étendus (ELM) dans le sens air-sol (§ 3.1.2.7.7 et 3.1.2.7.8).
- Note.— Le niveau 4 permet des communications de longue durée sur liaison de données dans le sens airsol ; il est ainsi possible d'avoir accès depuis le sol à des sources de données embarquées et d'assurer la transmission d'autres données nécessaires aux services de la circulation aérienne, qui ne sont pas disponibles lorsqu'on utilise des transpondeurs de niveau 2.
- 2.1.5.1.5 Niveau 5 Les transpondeurs de niveau 5 doivent avoir les capacités énumérées au § 2.1.5.1.4, ainsi que celles qui ont spécifiées en ce qui concerne les communications de messages Comm-B renforcés et de messages étendus (ELM) (§ 3.1.2.6.11.3.4, 3.1.2.7.6 et 3.1.2.7.9).
- Note.— Le niveau 5 permet des communications Comm-B et des communications de longue durée sur liaison de données avec des interrogateurs multiples, sans exiger l'utilisation de réservations multisites. Ce niveau de transpondeur a une capacité minimale de liaison de données supérieure à celle des autres niveaux de transpondeur.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 2 Edition : Date

Page 6 de 8 1 Janvier 2016

2.1.5.1.6 Squitter long — Les transpondeurs à squitter long doivent avoir les capacités énumérées aux § 2.1.5.1.2, 2.1.5.1.3, 2.1.5.1.4 ou 2.1.5.1.5, les capacités spécifiées pour la technique du squitter long (§ 3.1.2.8.6) et les capacités prescrites pour la technique inter-ACAS (§ 3.1.2.8.3 et 3.1.2.8.4). Les transpondeurs qui utilisent ces capacités doivent être désignés au moyen du suffixe « e ».

Note.— Par exemple, un transpondeur de niveau 4 capable d'utiliser la technique du squitter long sera dit « de niveau 4 e ».

- 2.1.5.1.7 Possibilité SI Les transpondeurs ayant la possibilité de traiter les codes SI doivent avoir les capacités énumérées aux § 2.1.5.1.1, 2.1.5.1.2, 2.1.5.1.3, 2.1.5.1.4 ou 2.1.5.1.5, ainsi que celles qui sont spécifiées en ce qui concerne l'utilisation du code SI (§ 3.1.2.3.2.1.4, 3.1.2.5.2.1, 3.1.2.6.1.3, 3.1.2.6.1.4.1, 3.1.2.6.9.1.1 et 3.1.2.6.9.2). Les transpondeurs ayant cette possibilité doivent être désignés par le suffixe « s ».
- Note.— Par exemple, un transpondeur de niveau 4 capable d'utiliser la technique du squitter long et de traiter les codes SI sera dit « de niveau 4es ».
- 2.1.5.1.7.1 Tous les transpondeurs mode S doivent être capables de traiter les codes SI conformément aux dispositions du § 2.1.5.1.7.
- 2.1.5.1.8 Dispositifs à squitter long qui ne sont pas des transpondeurs. Les dispositifs capables d'émettre des squitters longs mais qui ne font pas partie de transpondeurs mode S doivent respecter les spécifications du signal électromagnétique sur RF 1 090 MHz établies pour les transpondeurs mode S, sauf en ce qui concerne les niveaux de puissance à l'émission des dispositifs de la classe indiquée au § 5.1.1.
- 2.1.5.2 Tous les transpondeurs mode S utilisés pour les besoins de la circulation aérienne civile internationale doivent posséder, au minimum, les caractéristiques du niveau 2 qui sont spécifiées au § 2.1.5.1.2.
- Note 1.— L'utilisation de transpondeurs de niveau 1 peut être admise à l'intérieur d'un État ou aux termes d'un accord régional de navigation aérienne. Le transpondeur mode S de niveau 1 possède l'ensemble minimal de caractéristiques qui assure la compatibilité des transpondeurs mode S avec les interrogateurs SSR mode S. Sa définition vise à empêcher la prolifération de types de transpondeurs de niveau inférieur au niveau 2 incompatibles avec les interrogateurs SSR mode S.
- Note 2.— La spécification des possibilités de niveau 2 vise à assurer l'utilisation généralisée d'un transpondeur OACI normalisé afin de permettre la planification sur le plan mondial des installations et services sol mode S. Cette spécification vise également à dissuader les usagers de commencer à s'équiper de transpondeurs de niveau 1 qui seront périmés si les transpondeurs de niveau 2 deviennent obligatoires sur les aéronefs évoluant dans certains espaces aériens.
- 2.1.5.3 Les transpondeurs mode S installés à bord d'aéronefs dont la masse brute est supérieure à 5 700 kg ou qui sont capables d'une vitesse vraie maximale de croisière de plus de 463 km/h (250 kt) doivent être capables de fonctionner en diversité d'antennes conformément au § 3.1.2.10.4 :
 - a) si le certificat individuel de navigabilité de l'aéronef est délivré pour la première fois à compter du 1^{er} janvier 1990; ou
 - b) si l'emport de transpondeurs mode S est exigé par accord régional de navigation aérienne conformément aux dispositions des § 2.1.3.3.1 et 2.1.3.3.2.

Note.— Les aéronefs capables d'une vitesse vraie maximale de croisière de plus de 324 km/h (175 kt) doivent être capables de fonctionner avec une puissance de crête non inférieure à 21,0 dBW, comme il est spécifié au § 3.1.2.10.2, alinéa c).

2.1.5.4 COMPTES RENDUS DE POSSIBILITES DANS LES SQUITTERS MODE S

2.1.5.4.1 Les comptes rendus de possibilités dans les squitters d'acquisition mode S (transmissions non sollicitées sur liaison descendante) doivent être fournis conformément aux dispositions du § 3.1.2.8.5.1 pour

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 2 Edition : Date

Page 7 de 8

Janvier 2016

tous les transpondeurs mode S installés à partir du 1er janvier 1995.

2.1.5.4.2 Les transpondeurs équipés pour la technique du squitter long peuvent être dotés d'un moyen qui permet de neutraliser les squitters d'acquisition lorsque des squitters longs sont émis.

Note.— Cela facilitera la suppression des squitters d'acquisition si on convertit tous les ACAS pour recevoir le squitter long.

2.1.5.5 PUISSANCE D'EMISSION DES MESSAGES ETENDUS (ELM)

Pour faciliter la conversion des transpondeurs mode S existants pour inclure des capacités mode S complètes, les transpondeurs fabriqués avant le 1^{er} janvier 1999 doivent être autorisés à émettre une salve de segments d'ELM à un niveau de puissance minimal de 20 dBW.

Note. — Ceci représente un assouplissement de 1 dB de la puissance spécifiée au § 3.1.2.10.2.

2.1.6 Adresse SSR mode S (adresse d'aéronef)

L'adresse SSR mode S d'un aéronef immatriculé au Sénégal doit être l'une des 4096 adresses d'aéronef composées chacune de 24 bits, attribuées par l'OACI au Sénégal et assignées par l'Autorité d'aviation civile selon les dispositions figurant au § 3.1.2.4.1.2.3.1.1 et à l'Appendice au Chapitre 9 de la Partie 1 du Volume III du RAS 10.

2.1.7 Occupation du transpondeur

Note.— Des éléments indicatifs visant à une modélisation cohérente de l'occupation des transpondeurs figurent à l'Appendice M du Manuel de surveillance aéronautique (Doc 9924).

2.2 CONSIDERATIONS RELATIVES AUX FACTEURS HUMAINS

2.2.1 Les fournisseurs de services de navigation aérienne et les exploitants d'aéronef peuvent s'assurer que la conception et la certification des systèmes radar de surveillance, des transpondeurs et des systèmes anticollision respectent les principes des facteurs humains.

Note.— On trouve des éléments indicatifs sur les principes des facteurs humains dans le Doc 9683, Manuel d'instruction sur les facteurs humains, et dans la Circulaire 249 (Facteurs humains. Etude no 11 — Les facteurs humains dans les systèmes CNS/ATM) de l'OACI.

Amendement 3 03/11//2022

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 2 Edition : Date

Page 8 de 8 1 Janvier 2016

2.2.2 Utilisation des commandes

- 2.2.2.1 Les commandes de transpondeur qui ne sont pas destinées à être utilisées en vol ne doivent pas être directement accessibles à l'équipage de conduite.
- 2.2.2.2 L'utilisation des commandes de transpondeur destinées à être utilisées en vol peut être évaluée pour s'assurer qu'elles sont logiques et tolérantes à l'erreur humaine. En particulier, lorsque les fonctions du transpondeur sont intégrées à d'autres commandes du système, le fabricant peut veiller à ce que les commutations non intentionnelles entre les modes du transpondeur [(p. ex., du mode de fonctionnement au mode attente (STANDBY) ou au mode arrêt (OFF)] soient réduites au minimum.
- Note.— La commutation du mode pourrait, par exemple, être confirmée. Les méthodes habituellement employées pour changer le mode du transpondeur (touche de sélection de ligne, écran tactile, commande par curseur ou boule roulante) devraient être soigneusement conçues de manière à réduire au minimum les erreurs de l'équipage de conduite.
- 2.2.2.3 L'équipage de conduite peut toujours avoir accès aux renseignements sur l'état de fonctionnement du transpondeur.

Note.— Des renseignements sur le contrôle de l'état de fonctionnement du transpondeur figurent dans le document DO-181 E, Minimum Operational Performance Standards for Air Traffic Control Radar Beacon System/Mode Select (ATCRBS/Mode S) Airborne Equipment, de la RTCA et dans le document ED-73E, Minimum Operational Performance Specification for Secondary Surveillance Radar Mode S Transponders de l'EUROCAE.

Amendement 3 03/11/2022

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 1 de 133

Janvier 2016

CHAPITRE 3. SYSTEMES DE SURVEILLANCE

3.1 CARACTERISTIQUES DU SYSTEME RADAR SECONDAIRE DE SURVEILLANCE (SSR)

- Note 1.— Le § 3.1.1 prescri les caractéristiques techniques des systèmes SSR qui fonctionnent seulement en mode A et en mode C. Le § 3.1.2 prescrit les caractéristiques des systèmes qui fonctionnent en mode S. Le Chapitre 5 contient des spécifications additionnelles sur les squitters longs mode S.
- Note 2.— Les systèmes exploitant des possibilités mode S sont généralement utilisés à des fins de surveillance dans le cadre du contrôle de la circulation aérienne. Certaines applications ATC peuvent aussi utiliser des émetteurs mode S pour la surveillance des véhicules de surface ou la détection de cibles fixes, par exemple. Dans de tels cas particuliers, le mot « aéronef » peut désigner soit un aéronef, soit un véhicule (A/V). Même si ces applications n'utilisent peut-être qu'un ensemble limité de données, tout écart par rapport aux caractéristiques physiques normalisées doit être étudié très soigneusement par les autorités compétentes. Ces dernières doivent prendre en compte non seulement leur propre environnement de surveillance (SSR) mais aussi les effets possibles sur d'autres systèmes, comme l'ACAS.
 - Note 3.— Des unités supplétives hors SI sont utilisées conformément au RAS 05, Chapitre 3, § 3.2.2.

3.1.1 SYSTEMES FONCTIONNANT SEULEMENT EN MODE A ET EN MODE C

Les fournisseurs de services de navigation aérienne et les exploitants d'aéronef doivent s'assurer, chacun en ce qui le concerne, que lorsque le radar SSR mode A/C est installé, qu'il est conforme aux spécifications du présent paragraphe 3.1.1.

- Note 1.— Dans le présent paragraphe, les modes SSR sont désignés par les lettres A et C. Les lettres comportant un indice, comme A2 et C4, servent à désigner les différentes impulsions utilisées dans les trains d'impulsions dans le sens air-sol. Cet emploi général des lettres ne doit pas être interprété comme impliquant une association particulière de modes et de codes.
- Note 2.— Des dispositions relatives à l'enregistrement et à la conservation des données radar figurent dans le RAS 11.
 - 3.1.1.1 FREQUENCES RADIO (SENS SOL-AIR) D'INTERROGATION ET FREQUENCES PILOTES (SUPPRESSION DES LOBES SECONDAIRES D'INTERROGATION)
- 3.1.1.1.1 La fréquence porteuse de l'émission d'interrogation et de l'émission pilote doit être de 1 030 MHz.
 - 3.1.1.1.2 La tolérance de fréquence doit être de ±0,2 MHz.
- 3.1.1.1.3 Les fréquences porteuses de l'émission pilote et de chacune des émissions d'interrogation ne doivent pas s'écarter l'une de l'autre de plus de 0,2 MHz.
 - 3.1.1.2 FREQUENCE PORTEUSE DE REPONSE (SENS AIR-SOL)
 - 3.1.1.2.1 La fréquence porteuse de l'émission de réponse doit être de 1 090 MHz.
 - 3.1.1.2.2 La tolérance de fréquence doit être de ±3 MHz.

3.1.1.3 POLARISATION

La polarisation des signaux d'interrogation, des signaux pilotes et des signaux de réponse doit être essentiellement verticale.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 2 de 133

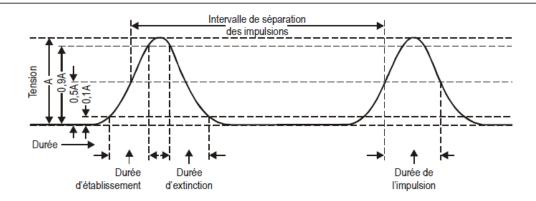
Janvier 2016

3.1.1.4 MODES D'INTERROGATION (SIGNAUX ELECTROMAGNETIQUES)

- 3.1.1.4.1 L'interrogation doit être constituée par l'émission de deux impulsions que l'on désigne par P₁ et P₃. Une impulsion de commande P₂ doit être transmise après la première impulsion d'interrogation P₁.
 - 3.1.1.4.2 Les modes d'interrogation A et C doivent être conformes aux définitions du § 3.1.1.4.3.
 - 3.1.1.4.3 L'intervalle entre P₁ et P₃ détermine, comme suit, le mode d'interrogation :

mode A $8 \pm 0.2 \mu s$ mode C $21 \pm 0.2 \mu s$

- 3.1.1.4.4 L'intervalle entre P_1 et P_2 doit être de 2 ± 0,15 µs.
- 3.1.1.4.5 La durée des impulsions P_1 , P_2 et P_3 doit être de 0,8 \pm 0,1 μ s.
- 3.1.1.4.6 La durée d'établissement des impulsions P_1 , P_2 et P_3 doit être comprise entre 0,05 et 0,1 μ s.
- Note 1.— Les définitions sont données à la Figure 3-1 Définitions des formes d'onde du radar secondaire de surveillance, des intervalles de temps et du point de référence de sensibilité et de puissance du transpondeur.
- Note 2.— La limite inférieure de la durée d'établissement des impulsions (0,05 µs) vise à réduire le rayonnement de bandes latérales. Cette condition sera satisfaite par l'équipement si le rayonnement de bandes latérales ne dépasse pas celui qui serait théoriquement engendré par une onde trapézoïdale ayant la durée d'établissement des impulsions fixée.
 - 3.1.1.4.7 La durée d'extinction des impulsions P₁, P₂ et P₃ doit être comprise entre 0,05 et 0,2 µs.
- Note.— La limite inférieure de la durée d'extinction des impulsions (0,05 µs) vise à réduire le rayonnement de bandes secondaires. Cette condition sera satisfaite par l'équipement si le rayonnement de bandes secondaires ne dépasse pas celui qui serait théoriquement engendré par une onde trapézoïdale ayant la durée d'extinction des impulsions fixée.
 - 3.1.1.5 CARACTERISTIQUES DES SIGNAUX D'INTERROGATION ET DES SIGNAUX DE COMMANDE DE SUPPRESSION DES LOBES SECONDAIRES
 - 3.1.1.5.1 L'amplitude de rayonnement de l'impulsion P₂ à l'antenne du transpondeur doit être :
 - a) égale ou supérieure à l'amplitude de rayonnement de l'impulsion P1 au moment des émissions de lobes secondaires par l'antenne émettant l'impulsion P1; et
 - b) à un niveau situé à plus de 9 dB au-dessous de l'amplitude de rayonnement de l'impulsion P₁, dans les limites de l'arc d'interrogation souhaité.
- 3.1.1.5.2 Dans les limites de l'ouverture souhaitée du faisceau d'interrogation directionnelle (lobe principal), l'amplitude de rayonnement de l'impulsion P_3 doit se situer, à 1 dB près, au niveau de l'amplitude de rayonnement de l'impulsion P_1 .



RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 3 de 133 1 Janvier 2016

Définitions

Amplitude A de l'impulsion. Amplitude maximale de l'enveloppe de l'impulsion.

Durée de l'impulsion. Intervalle de temps compris entre les points 0,5A du bord avant et du bord arrière de l'enveloppe de l'impulsion.

Durée d'établissement de l'impulsion. Durée comprise entre les points 0,1A et 0,9A du bord avant de l'enveloppe de l'impulsion.

Durée d'extinction de l'impulsion. Durée comprise entre les points 0,9A et 0,1A du bord arrière de l'enveloppe de l'impulsion.

Durée d'inversion de phase. Temps écoulé entre les points à 10° et à 170° d'une inversion de phase.

Intervalle de séparation des impulsions. Intervalle de temps compris entre le point 0,5A du bord avant de la première impulsion et le point 0,5A du bord avant de la deuxième impulsion.

Intervalles de temps. Les intervalles de temps sont rapportés :

- a) au point 0,5A du bord avant d'une impulsion ;
- b) au point 0,5A du bord arrière d'une impulsion ; ou
- au point à 90° d'une inversion de phase.

Inversion de phase. Déphasage de 180° de la porteuse radiofréquence.

Point de référence de sensibilité et de puissance du transpondeur. Extrémité côté antenne de la ligne de transmission du transpondeur.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 4 de 133

Janvier 2016

3.1.1.6 CARACTERISTIQUES DES SIGNAUX DE REPONSE

(SIGNAUX ELECTROMAGNETIQUES)

3.1.1.6.1 *Impulsions d'encadrement.* Pour la réponse, le système doit utiliser un signal comprenant deux impulsions d'encadrement séparées par un intervalle de 20,3 µs et qui constituent le code le plus élémentaire.

3.1.1.6.2 IMPULSIONS D'INFORMATION

3.1.1.6.2.1 Les impulsions d'information doivent être séparées, à partir de la première impulsion d'encadrement, par des intervalles en progression arithmétique de raison 1,45 µs. Ces impulsions d'information ont les désignations et les positions suivantes :

Impulsion	Position (µs)
C_1	1,45
A_1	2,90
C_2	4,35
A_2	5,80
C_4	7,25
A_4	8,70
Χ	10,15
B ₁	11,60
D_1	13,05
B_2	14,50
D_2	15,95
B_4	17,40
D_4	18,85

Note.— La spécification concernant l'emploi de ces impulsions figure au § 2.1.4.1. Des informations sur l'impulsion « X » figurent dans le Manuel de surveillance aéronautique (Doc 9924).

- 3.1.1.6.2.2 L'impulsion X ne doit pas être utilisée dans les réponses aux interrogations mode A ou mode C.
- 3.1.1.6.2.3 [Non applicable]
- 3.1.1.6.3 Impulsion spéciale d'identification de position (SPI). Outre les impulsions d'information prévues, une impulsion spéciale d'identification de position doit être transmise, mais seulement par commande manuelle (du pilote). Si elle est transmise, elle doit être située 4,35 µs après la dernière impulsion d'encadrement des réponses mode A seulement.
- 3.1.1.6.4 Forme des impulsions de réponse. Toutes les impulsions de réponse doivent avoir une durée d'impulsion de $0.45 \pm 0.1~\mu s$, une durée d'établissement d'impulsion comprise entre 0.05 et $0.1~\mu s$ et une durée d'extinction d'impulsion comprise entre 0.05 et $0.2~\mu s$. La variation d'amplitude entre impulsions d'un même train d'impulsions ne doit pas dépasser 1 dB.

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 5 de 133

Janvier 2016

Note.— La limite inférieure des durées d'établissement et d'extinction des impulsions (0,05 µs) vise à réduire le rayonnement de bandes latérales. Cette condition sera satisfaite par l'équipement si le rayonnement de bandes latérales ne dépasse pas celui qui serait théoriquement engendré par une onde trapézoïdale ayant les durées d'établissement et d'extinction des impulsions fixées.

- 3.1.1.6.5 Tolérances de position des impulsions de réponse. La tolérance d'espacement entre chaque impulsion (y compris la dernière impulsion d'encadrement) et la première impulsion du groupe de réponse doit être de $\pm 0,10~\mu s$. La tolérance d'espacement de l'impulsion spéciale d'identification de position par rapport à la dernière impulsion d'encadrement du groupe de réponse doit être de $\pm 0,10~\mu s$. La tolérance d'espacement entre n'importe quelle impulsion du groupe de réponse et n'importe quelle autre impulsion (hormis la première impulsion d'encadrement) ne doit pas dépasser $\pm 0,15~\mu s$.
- 3.1.1.6.6 Nomenclature des codes. Les chiffres de 0 à 7 doivent être utilisés dans la désignation des codes. Cette désignation doit être déterminée par la somme des indices des impulsions utilisées (énumérées au § 3.1.1.6.2 ci-dessus) dans l'ordre ci-après :

Chiffre	Groupe d'impulsions
Premier (le plus significatif)	Α
Deuxième	В
Troisième	С
Quatrième	D

3.1.1.7 CARACTERISTIQUES TECHNIQUES DES TRANSPONDEURS FONCTIONNANT SEULEMENT EN MODE A ET EN MODE C

- 3.1.1.7.1 *Réponse*. Le transpondeur doit répondre (taux de déclenchement au moins égal à 90 %) lorsque toutes les conditions suivantes sont réunies :
 - a) l'amplitude de réception de l'impulsion P_3 dépasse un niveau situé à 1 dB au-dessous de l'amplitude de réception de l'impulsion P_1 mais ne dépasse pas 3 dB au-dessus de cette amplitude ;
 - b) soit qu'aucune impulsion n'est reçue dans l'intervalle de 1,3 μ s à 2,7 μ s après l'impulsion P₁, soit que P₁ dépasse de plus de 9 dB toute impulsion reçue dans cet intervalle ;
 - c) l'amplitude de réception d'une interrogation correcte dépasse de plus de 10 dB l'amplitude de réception des impulsions erratiques alors que ces dernières ne sont pas reconnues par le transpondeur comme impulsion P₁, P₂ ou P₃.
 - 3.1.1.7.2 Le transpondeur ne doit pas répondre dans les conditions ci-après :
 - a) à des interrogations lorsque l'intervalle entre les impulsions P_1 et P_3 diffère de plus de $\pm 1,0$ μs des intervalles spécifiés au § 3.1.1.4.3 ;
 - b) sur réception d'une impulsion isolée qui ne présente pas de variations d'amplitude ressemblant à celles d'une interrogation normale.
- 3.1.1.7.3 *Temps mort*. Après reconnaissance d'une interrogation correcte, le transpondeur ne doit répondre à aucune autre interrogation au moins pendant la durée du train d'impulsions de réponse. Ce temps mort doit cesser au plus tard 125 µs après l'émission de la dernière impulsion du train d'impulsions de réponse.

3.1.1.7.4 SUPPRESSION

Note.— Cette caractéristique sert à prévenir l'émission de réponses aux interrogations reçues dans les lobes secondaires de l'antenne de l'interrogateur et à empêcher les transpondeurs modes A/C de répondre aux interrogations mode S.

3.1.1.7.4.1 Les émissions du transpondeur doivent être supprimées si l'amplitude de réception de

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 6 de 133

Janvier 2016

 P_2 est au moins égale à l'amplitude de réception de P_1 et espacée de cette dernière de $2 \pm 0,15 \,\mu s$. La détection de P_3 n'est pas exigée comme préalable de cette suppression.

- 3.1.1.7.4.2 La période de suppression du transpondeur doit être de $35 \pm 10 \, \mu s$.
- 3.1.1.7.4.2.1 La suppression doit pouvoir être déclenchée à nouveau pour la totalité de sa durée moins de 2 µs après la fin d'une période quelconque de suppression.
 - 3.1.1.7.4.3 Suppression en présence de l'impulsion S1

Note.— L'impulsion S₁ est utilisée dans la technique « whisper-shout » employée par l'ACAS pour faciliter la surveillance ACAS des aéronefs équipés des modes A/C dans l'espace aérien à forte densité de circulation. La technique whisper-shout est expliquée dans le Manuel du système anticollision embarqué (ACAS) (Doc 9863) de l'OACI.

Lorsqu'une impulsion S1 est détectée 2,0 \pm 0,15 μ s avant l'impulsion P1 d'une interrogation mode A ou mode C :

- a) si S₁ et P₁ sont au-dessus du MTL*, les émissions du transpondeur doivent être supprimées comme il est spécifié au § 3.1.1.7.4.1 ;
- b) si P₁ est au MTL et S₁ est au MTL, les émissions du transpondeur doivent être supprimées et le transpondeur ne doit pas répondre à plus de 10 % des interrogations modes A/C;
- c) si P₁ est au MTL et S₁ est au MTL -3 dB, le transpondeur doit répondre aux interrogations modes A/C au moins 70 % du temps ;
- d) si P₁ est au MTL et S₁ est au MTL -6 dB, le transpondeur doit répondre aux interrogations modes A/C au moins 90 % du temps.
- Note 1.— La suppression du transpondeur fait suite à la détection de S_1 et de P_1 et ne requiert pas la détection d'une impulsion P_2 ou P_3 .
- Note 2.— L'amplitude de S_1 est plus faible que celle de P_1 . Certains ACAS emploient ce mécanisme pour améliorer la détection de la cible (Chapitre 4, § 4.3.7.1).
- Note 3.— Ces spécifications s'appliquent aussi à un transpondeur modes A/C seulement lorsqu'une impulsion S₁ précède une interrogation intermodes (Chapitre 2, § 2.1.2.1).
 - * Note 4.— MTL : niveau minimal de déclenchement du transpondeur

3.1.1.7.5 SENSIBILITE DU RECEPTEUR ET GAMME DYNAMIQUE

- 3.1.1.7.5.1 Le niveau minimal de déclenchement du transpondeur doit être tel que des réponses sont émises pour 90 % au moins des signaux d'interrogation :
 - a) lorsque les deux impulsions P₁ et P₃ constituant une interrogation sont d'amplitude égale, l'impulsion P₂ n'étant pas détectée ; et
 - b) lorsque la puissance de ces signaux se situe nominalement à 71 dB au-dessous de 1 mW en restant comprise entre 69 dB et 77 dB au-dessous de 1 mW.
- 3.1.1.7.5.2 Les caractéristiques de réponse et de suppression doivent s'appliquer à l'amplitude de réception de l'impulsion P₁ lorsqu'elle se situe entre le niveau minimal de déclenchement et 50 dB au-dessus de ce niveau.
- 3.1.1.7.5.3 La variation du niveau minimal de déclenchement entre les différents modes ne doit pas dépasser 1 dB pour les valeurs nominales d'espacement et de largeur de l'impulsion.
- 3.1.1.7.6 Discrimination de durée d'impulsion. Les signaux pour lesquels l'amplitude de réception se situe entre le niveau minimal de déclenchement et 6 dB au-dessus de ce niveau, et dont la durée est

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 7 de 133 1 Janvier 2016

inférieure à 0,3 µs, ne doivent pas déclencher le mécanisme de réponse ou de suppression du transpondeur. Sauf s'il s'agit d'impulsions isolées dont les variations d'amplitude ressemblent à celles d'une interrogation, une impulsion isolée de durée supérieure à 1,5 µs ne doit pas déclencher la réponse ou la suppression des émissions du transpondeur dans la plage d'amplitude de signaux comprise entre le niveau minimal de déclenchement et 50 dB au-dessus de ce niveau.

- 3.1.1.7.7 Suppression des échos et durée de rétablissement. Le transpondeur doit comprendre des circuits de suppression des échos conçus de manière à permettre le fonctionnement normal en présence d'échos de signaux. L'installation de ces circuits doit être conforme aux spécifications données au § 3.1.1.7.4.1 pour la suppression des lobes secondaires.
- 3.1.1.7.7.1 Désensibilisation. Sur réception d'une impulsion de durée supérieure à 0,7 µs, le récepteur doit être soumis à une désensibilisation dont le niveau se situe à 9 dB au moins de l'amplitude de l'impulsion de désensibilisation, mais ne doit à aucun moment dépasser cette amplitude, mis à part un dépassement possible au cours de la première microseconde suivant la réception de l'impulsion de désensibilisation.
- Note.— Les impulsions isolées d'une durée inférieure à 0,7 µs ne sont pas censées causer la désensibilisation spécifiée ni une désensibilisation d'une durée supérieure à celle qu'autorisent les § 3.1.1.7.7.1 et 3.1.1.7.7.2.
- 3.1.1.7.7.2 Rétablissement. A la suite de la désensibilisation, la sensibilité du récepteur doit se rétablir (à moins de 3 dB du niveau minimal de déclenchement) moins de 15 µs après la réception d'une impulsion de désensibilisation possédant une puissance de signal atteignant 50 dB au-dessus du niveau minimal de déclenchement. Le rétablissement doit se faire à un taux moyen ne dépassant pas 4,0 dB par microseconde.
- 3.1.1.7.8 Taux de déclenchement erratique. En l'absence de signaux d'interrogation valides, les transpondeurs modes A/C ne doivent pas émettre plus de 30 réponses mode A ou mode C non désirées par seconde pour une intégration effectuée sur un intervalle équivalant à 300 déclenchements erratiques au moins, ou à 30 s, la plus faible de ces deux valeurs étant seule considérée. Ce taux de déclenchement erratique ne doit pas être dépassé lorsque tous les équipements susceptibles de provoquer du brouillage à bord du même aéronef fonctionnent à leurs niveaux de brouillage maximaux.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 8 de 133 1 Janvier 2016

3.1.1.7.8.1 Taux de déclenchement erratique en présence de brouillage dans la bande par une onde entretenue de faible niveau. Le taux de déclenchement erratique total pour toutes les réponses mode A et/ou mode C ne doit pas dépasser 10 groupes d'impulsions de réponse ou suppressions par seconde en moyenne au cours d'une période de 30 s, en présence de brouillage par une onde entretenue non cohérente à une fréquence de 1 030 \pm 0,2 MHz et à un niveau de signal de -60 dBm ou moins.

3.1.1.7.9 *TAUX DE REPONSE*

- 3.1.1.7.9.1 Tous les transpondeurs doivent être capables de générer continuellement au moins 500 réponses par seconde dans le cas d'une réponse codée sur 15 impulsions. Les installations utilisées uniquement au-dessous de 4 500 m (15 000 ft), ou au-dessous d'une altitude inférieure à cette valeur fixée par l'autorité compétente ou par accord régional de navigation aérienne, et à bord d'aéronefs dont la vitesse vraie maximale de croisière ne dépasse pas 175 kt (324 km/h), doivent être capables de générer par seconde, pendant 100 ms, au moins 1 000 réponses codées sur 15 impulsions. Les installations exploitées au-dessus de 4 500 m (15 000 ft) ou à bord d'aéronefs dont la vitesse vraie maximale de croisière dépasse 175 kt (324 km/h) doivent être capables de générer par seconde, pendant 100 ms, au moins 1 200 réponses codées sur 15 impulsions.
- Note 1.— Une réponse codée sur 15 impulsions comprend 2 impulsions d'encadrement, 12 impulsions d'information et l'impulsion SPI.
- Note 2.— Le taux prescrit de 500 réponses par seconde fixe le taux minimal de réponse continu du transpondeur. Les taux de 100 ou 120 réponses par intervalle de 100 ms, selon les critères d'altitude et de vitesse indiqués ci-dessus, définissent la capacité de pointe du transpondeur. Le transpondeur doit être capable de répondre à ces courtes rafales même s'il est incapable de maintenir cette cadence. Si le transpondeur est soumis à des cadences d'interrogation supérieures à sa capacité de réponse, le limiteur de taux de réponse spécifié au § 3.1.1.7.9.2 désensibilise progressivement le transpondeur pour lui permettre de fonctionner avec des interrogateurs plus rapprochés. La désensibilisation supprime les signaux d'interrogation plus faibles.
- 3.1.1.7.9.2 Limitation du taux de réponse. Un limiteur de taux de réponse du type à réduction de sensibilité, ayant pour effet d'empêcher la réponse à des signaux plus faibles lorsqu'un taux de réponse fixé à l'avance a été atteint, doit être compris dans le transpondeur, afin d'éviter les effets d'une sur-interrogation. La plage de ce limiteur doit permettre, au minimum, de le régler à toute valeur comprise entre 500 et 2 000 réponses par seconde ou au taux maximal de réponse si ce taux est inférieur à 2 000 réponses par seconde, quel que soit le nombre d'impulsions contenues dans chaque réponse. La réduction de sensibilité doit être inférieure à 3 dB tant que 90 % du nombre de réponses choisi ne sont pas atteints. Elle doit être d'au moins 30 dB pour les valeurs supérieures à 150 %.
- 3.1.1.7.10 Retard et instabilité des réponses. Le retard entre l'arrivée au récepteur du transpondeur du bord avant de l'impulsion P_3 et la transmission du bord avant de la première impulsion de la réponse doit être de $3 \pm 0.5 \,\mu s$. L'instabilité totale du groupe codé d'impulsions de réponse correspondant à l'impulsion d'interrogation P_3 ne doit pas excéder $0.1 \,\mu s$ si le niveau d'entrée du récepteur est compris entre 3 et $50 \,\mu s$ dessus du niveau minimal de déclenchement. Le retard ne doit pas varier de plus de $0.2 \,\mu s$ entre les divers modes dans lesquels le transpondeur est capable de répondre.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 9 de 133

Janvier 2016

3.1.1.7.11 PUISSANCE DE SORTIE ET CYCLE D'UTILISATION DU TRANSPONDEUR

- 3.1.1.7.11.1 La puissance de crête de l'impulsion disponible à l'extrémité antenne de la ligne de transmission du transpondeur doit être maintenue à 21 dB au minimum et 27 dB au maximum au-dessus de 1 W. En ce qui concerne toutefois les installations utilisées seulement au-dessous de 4 500 m (15 000 ft) ou d'une altitude inférieure à cette valeur, qui aura été fixée par l'autorité compétente ou par accord régional de navigation aérienne, la puissance de crête de l'impulsion disponible à l'extrémité antenne de la ligne de transmission du transpondeur doit pouvoir être de 18,5 dB au minimum et de 27 dB au maximum au-dessus de 1 W.
- Note.— Un dispositif non transpondeur à squitters longs situé dans un véhicule de surface d'aérodrome peut fonctionner à une puissance de sortie minimale inférieure comme il est spécifié au § 5.1.1.2.
- 3.1.1.7.11.2 La puissance de crête de l'impulsion spécifiée au § 3.1.1.7.11.1 peut être maintenue pour une gamme de réponses comprise entre 400 réponses par seconde (code 0000) et 1 200 réponses par seconde (contenu maximal) ou une valeur maximale inférieure à 1 200 réponses par seconde correspondant aux possibilités du transpondeur.

3.1.1.7.12 CODES DE REPONSE

- 3.1.1.7.12.1 *Identification*. La réponse à une interrogation mode A doit être composée des deux impulsions d'encadrement spécifiées au § 3.1.1.6.1 et des impulsions d'information (code mode A) spécifiées au § 3.1.1.6.2.
 - Note.— Le code mode A est désigné par une séquence de quatre chiffres conformément au § 3.1.1.6.6.
 - 3.1.1.7.12.1.1 Le code mode A doit être sélectionné manuellement parmi les 4 096 codes disponibles.
- 3.1.1.7.12.2 Transmission de l'altitude-pression. La réponse aux interrogations mode C doit être constituée par les deux impulsions d'encadrement spécifiées au § 3.1.1.6.1. Lorsque des données numériques sur l'altitude-pression sont disponibles, les impulsions d'information spécifiées au § 3.1.1.6.2 doivent être transmises elles aussi.
- 3.1.1.7.12.2.1 Les transpondeurs doivent être équipés de dispositifs permettant de supprimer les impulsions d'information tout en conservant les impulsions d'encadrement lorsque les dispositions du § 3.1.1.7.12.2.4 ne sont pas respectées pour la réponse aux interrogations mode C.
- 3.1.1.7.12.2.2 Les impulsions d'information doivent être choisies automatiquement par un convertisseur analogique-numérique branché sur une source de données sur l'altitude-pression à bord de l'aéronef ayant pour référence le calage normal de 1 013,25 hectopascals.
 - Note.— Le calage de pression de 1 013,25 hectopascals est égal à 29,92 pouces de mercure.
- 3.1.1.7.12.2.3 L'altitude-pression doit être transmise par intervalles de 100 ft, les impulsions étant choisies comme il est indiqué à l'Appendice au présent chapitre.
- 3.1.1.7.12.2.4 Le code sélectionné par le codeur numérique doit correspondre, avec une tolérance de ±38,1 m (125 ft), pour une probabilité de 95 %, aux données sur l'altitude-pression (rapportées au calage altimétrique normal de 1 013,25 hectopascals) que l'équipage utilise à bord de l'aéronef pour respecter le profil de vol assigné.
- 3.1.1.7.13 Temps d'émission de l'impulsion spéciale d'identification de position (SPI). S'il y a lieu, cette impulsion doit être transmise avec les réponses mode A, comme il est spécifié au § 3.1.1.6.3, pendant 15 à 30 s.

3.1.1.7.14 ANTENNE

3.1.1.7.14.1 Le système d'antenne du transpondeur, une fois installé sur un aéronef, doit avoir un diagramme de rayonnement essentiellement omnidirectif dans le plan horizontal.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 10 de 133

Janvier 2016

3.1.1.7.14.2 Le diagramme de rayonnement vertical peut être nominalement l'équivalent de celui d'une antenne unipolaire quart d'onde à plan de sol.

3.1.1.8 CARACTERISTIQUES TECHNIQUES DES INTERROGATEURS AU SOL FONCTIONNANT SEULEMENT EN MODE A ET EN MODE C

3.1.1.8.1 *Fréquence de répétition de l'interrogateur.* La fréquence maximale de répétition de l'interrogateur doit être de 450 interrogations par seconde.

Note.— Pour réduire au minimum le déclenchement inutile du transpondeur et la quantité de fausses réponses qui en résulteraient, tous les interrogateurs utiliseront la fréquence de répétition d'interrogation la plus faible qui soit compatible avec les caractéristiques d'affichage, l'ouverture du faisceau d'interrogation et la vitesse de rotation de l'antenne.

3.1.1.8.2 PUISSANCE RAYONNEE

- Note.— Pour réduire autant que possible le brouillage dans le système, la puissance apparente rayonnée des interrogateurs sera limitée à la plus faible valeur compatible avec les besoins de l'exploitation applicables à chaque emplacement d'interrogateur.
- 3.1.1.8.3 Lorsqu'il faut utiliser des données mode C en provenance d'aéronefs volant au-dessous des niveaux de transition, il peut être tenu compte de la référence de pression de l'altimètre.
- Note.— L'emploi du mode C au-dessous des niveaux de transition est conforme aux principes selon lesquels le mode C peut être utilisé avantageusement dans tous les environnements.

3.1.1.9 DIAGRAMME DE RAYONNEMENT DE L'INTERROGATEUR

3.1.1.9.1 L'ouverture du faisceau de l'antenne directive de l'interrogateur émettant l'impulsion P3 peut ne pas être plus importante que ne l'exige l'exploitation, et le niveau de rayonnement des lobes secondaires et arrière de l'antenne directive peut se situer à 24 dB au moins au-dessous du niveau de crête du lobe principal.

3.1.1.10 DISPOSITIF DE CONTROLE DE L'INTERROGATEUR

3.1.1.10.1 La précision de la mesure de distance et la précision en azimut de l'interrogateur au sol doivent faire l'objet d'un contrôle assuré assez fréquemment pour garantir l'intégrité du système.

Note.— Les interrogateurs qui sont associés au radar primaire et fonctionnent en liaison avec lui peuvent l'utiliser comme dispositif de contrôle ; dans le cas contraire, il faudrait prévoir un dispositif électronique de contrôle de la précision de la mesure de distance et de la précision en azimut.

3.1.1.10.2 Outre le contrôle de la mesure de distance et de l'azimut, il peut être prévu le contrôle continu des autres paramètres critiques de l'interrogateur au sol afin de déceler toute détérioration des performances qui dépasse les tolérances de système admissibles et de la signaler.

3.1.1.11 EMISSION NON ESSENTIELLE ET REPONSES PARASITES

- 3.1.1.11.1 Rayonnement non essentiel. Les rayonnements en ondes entretenues peuvent ne pas excéder 76 dB au-dessous de 1 W pour l'interrogateur et 70 dB au-dessous de 1 W pour le transpondeur.
- 3.1.1.11.2 Réponses parasites. Le niveau des réponses de l'équipement embarqué comme de l'équipement sol à des signaux non compris dans la bande passante des récepteurs peut se situer à 60 dB au moins au-dessous du niveau normal de sensibilité.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 11 de 133 1 Janvier 2016

3.1.2 SYSTEMES FONCTIONNANT EN MODE S

Les fournisseurs de services de navigation aérienne et les exploitants d'aéronef doivent s'assurer, chacun en ce qui le concerne, que lorsque des systèmes fonctionnant en mode S sont installés, qu'ils sont conformes aux spécifications du présent paragraphe 3.1.2.

3.1.2.1 CARACTERISTIQUES DES SIGNAUX ELECTROMAGNETIQUES D'INTERROGATION.

Les paragraphes qui suivent décrivent les signaux électromagnétiques tels qu'ils sont censés apparaître à l'antenne du transpondeur.

- Note.— Les signaux peuvent être altérés en cours de propagation et, par conséquent, certaines tolérances relatives à la durée, à l'espacement et à l'amplitude des impulsions d'interrogation sont plus strictes pour les interrogateurs, comme il est indiqué au § 3.1.2.11.4.
- 3.1.2.1.1 *Fréquence porteuse d'interrogation*. Pour toutes les interrogations (transmissions montantes) émanant d'installations au sol fonctionnant en mode S, la fréquence porteuse doit être de 1 030 ± 0,01 MHz, sauf durant l'inversion de phase, tout en respectant les limites du spectre spécifiées au § 3.1.2.1.2.
- Note.— Durant l'inversion de phase, la fréquence du signal peut se déplacer de plusieurs MHz avant de retourner à la valeur spécifiée.
- 3.1.2.1.2 *Spectre d'interrogation*. Le spectre d'une interrogation mode S autour de la fréquence porteuse ne doit pas dépasser les limites spécifiées à la Figure 3-2.
- Note.— Le spectre d'interrogation mode S est fonction des données. Le spectre le plus large correspond à une interrogation qui ne contient que des UN binaires.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 12 de 133 1 Janvier 2016

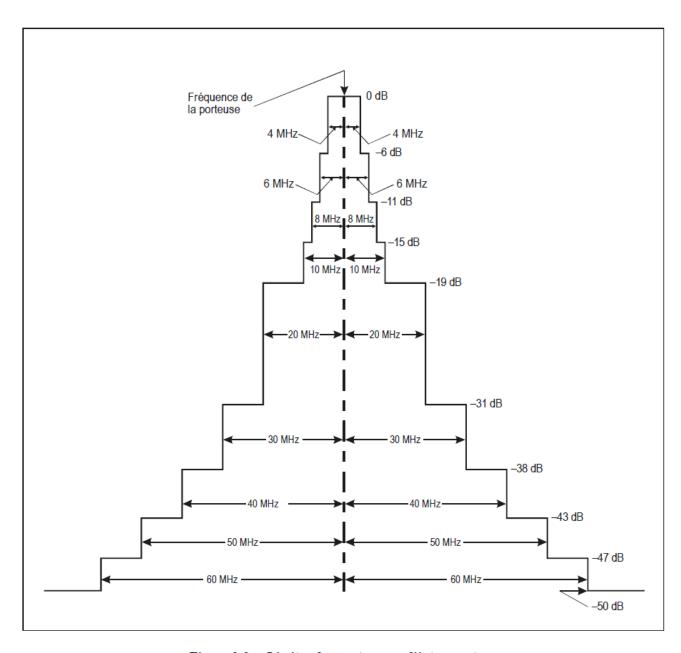


Figure 3-2. Limites du spectre pour l'interrogateur

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 13 de 133 1 Janvier 2016

- 3.1.2.1.3 Polarisation. La polarisation des transmissions d'interrogation et de commande doit nominalement être verticale.
- 3.1.2.1.4 *Modulation*. Pour les interrogations mode S, la fréquence porteuse doit être modulée par impulsions. De plus, l'impulsion de données P₆ doit avoir une modulation de phase interne.
- 3.1.2.1.4.1 *Modulation des impulsions*. Les interrogations intermodes et mode S doivent se composer d'une séquence d'impulsions spécifiée au § 3.1.2.1.5 et dans les Tableaux 3-1, 3-2, 3-3 et 3-4.

Note.— La forme des impulsions de 0,8 µs utilisées pour les interrogations intermodes et mode S est identique à celle des impulsions utilisées dans les modes A et C, qui sont définies au § 3.1.1.4.

Tableau 3-1. Formes d'impulsions — Interrogations mode S et intermodes

		Tolérance	,	Durée blissement)	(Duré d'extinc	
Impulsion	Durée	de durée	Min.	Max.	Min.	Мах.
P_1, P_2, P_3, P_5	0,8	±0,1	0,05	0,1	0,05	0,2
P ₄ (courte)	0,8	±0,1	0,05	0,1	0,05	0,2
P ₄ (longue)	1,6	±0,1	0,05	0,1	0,05	0,2
P ₆ (courte)	16,25	±0,25	0,05	0,1	0,05	0,2
P ₆ (longue)	30,25	±0,25	0,05	0,1	0,05	0,2
S_1	0,8	±0,1	0,05	0,1	0,05	0,2

Tableau 3-2. Formes d'impulsions — Réponses mode S

	Tolérance de	(Durée d'établissement)		(Durée d'	extinction)
Durée	durée	Min.	Max.	Min.	Max.
0,5	±0,05	0,05	0,1	0,05	0,2
1,0	±0,05	0,05	0,1	0,05	0,2

- 3.1.2.1.4.2 Modulation de phase. Les impulsions P₆ courtes (16,25 µs) et longues (30,25 µs) dont il s'agit au § 3.1.2.1.4.1 doivent comporter une modulation de phase différentielle binaire interne se composant d'inversions de phase de 180 degrés de la porteuse au débit de 4 mégabits par seconde.
- 3.1.2.1.4.2.1 Durée de l'inversion de phase. La durée de l'inversion de phase doit être inférieure à 0,08 µs et l'avance (ou le retard) de phase doit varier de façon monotone pendant toute la période de transition. Aucune modulation de fréquence ne doit être appliquée pendant la phase de transition.
- Note 1.— La durée minimale de l'inversion de phase n'est pas spécifiée, mais les limites du spectre spécifiées au § 3.1.2.1.2 doivent être respectées.
- Note 2.— L'inversion de phase peut être produite par différentes méthodes, notamment par une méthode dure qui provoque une forte chute d'amplitude et une rapide inversion de phase ou par d'autres techniques qui n'entraînent qu'une faible baisse d'amplitude ou aucune baisse d'amplitude, mais qui amènent un déplacement

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 14 de 133 1 Janvier 2016

de fréquence durant l'inversion de phase et une inversion de phase lente (80 ns). Un démodulateur ne peut faire aucune hypothèse sur la technique de modulation utilisée et ne peut donc pas se fier aux particularités du signal durant l'inversion de phase pour détecter une inversion de phase.

3.1.2.1.4.2.2 Relation de phase. Pour la relation de phase de 0 et 180 degrés entre éléments successifs de l'impulsion P_6 et pour l'inversion de phase synchro (§ 3.1.2.1.5.2.2) de cette impulsion, la tolérance doit être de ± 5 degrés.

Note.— Dans le mode S, on entend par « élément » l'intervalle de porteuse de $0,25~\mu s$ entre deux inversions de phase de données.

3.1.2.1.5 Séquences d'impulsions et d'inversions de phase. Les séquences d'impulsions ou d'inversions de phase décrites au § 3.1.2.1.4 doivent constituer les interrogations.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 15 de 133 1 Janvier 2016

	Tableau 3-3. Défin			
	Champ Format			
Indicatif	Fonction	UF	DF	Référence (§
AA	Adresse annoncée		11, 17, 18	3.1.2.5.2.2.2
AC	Code d'altitude		4, 20	3.1.2.6.5.4
AF	Champ d'application		19	3.1.2.8.8.2
AP	Adresse/parité	Tous	0, 4, 5, 16, 20, 21, 24	3.1.2.3.2.1.3
AQ	Acquisition	0		3.1.2.8.1.1
CA	Possibilités		11, 17	3.1.2.5.2.2.1
CC	Possibilité de liaison inter-ACAS		0	3.1.2.8.2.3
CF	Champ de commande		18	3.1.2.8.7.2
CL	Étiquette de code	11		3.1.2.5.2.1.3
DF	Format descendant		Tous	3.1.2.3.2.1.2
DI	Identification d'indicatif	4, 5, 20, 21		3.1.2.6.1.3
DP	Parité des données		20, 21	3.1.2.3.2.1.5
DR	Demande descendante		4, 5, 20, 21	3.1.2.6.5.2
DS	Sélecteur de données	0		3.1.2.8.1.3
FS	Statut du vol		4, 5, 20, 21	3.1.2.6.5.1
IC	Code d'interrogateur	11		3.1.2.5.2.1.2
ID	Identité		5, 21	3.1.2.6.7.1
KE	Contrôle ELM		24	3.1.2.7.3.1
MA	Message Comm-A	20, 21		3.1.2.6.2.1
MB	Message Comm-B		20, 21	3.1.2.6.6.1
MC	Message Comm-C	24		3.1.2.7.1.3
MD	Message Comm-D		24	3.1.2.7.3.3
ME	Message sur squitter long		17, 18	3.1.2.8.6.2
MU	Message ACAS	16		4.3.8.4.2.3
MV	Message ACAS		16	3.1.2.8.3.1, 4.3.8.4.2.4
NC	Numéro de segment C	24		3.1.2.7.1.2
ND	Numéro de segment D		24	3.1.2.7.3.2
PC	Protocole	4, 5, 20, 21		3.1.2.6.1.1
PI	Parité/identificateur d'interrogateur		11, 17, 18	3.1.2.3.2.1.4
PR	Probabilité de réponse	11		3.1.2.5.2.1.1
RC	Contrôle de réponse	24		3.1.2.7.1.1

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 16 de 133 1 Janvier 2016

	Tableau 3-3. Définition des champs					
	Champ	Fo	ormat			
Indicatif	Fonction	UF	DF	Référence (§)		
RI	Information de réponse		0	3.1.2.8.2.2		
RL	Longueur de réponse	0		3.1.2.8.1.2		
RR	Demande de réponse	4, 5, 20, 21		3.1.2.6.1.2		
SD	Indicatif spécial	4, 5, 20, 21		3.1.2.6.1.4		
SL	Niveau de sensibilité (ACAS)		0,16	4.3.8.4.2.5		
UF	Format montant	Tous		3.1.2.3.2.1.1		
UM	Message utilitaire		4, 5, 20, 21	3.1.2.6.5.3		
VS	Situation de l'aéronef dans le plan Vertical		0	3.1.2.8.2.1		

	Tableau 3-4. Définition de	s sous-champ	S
	Sous-champ		
Indicatif	Fonction	Champ	Référence (§)
ACS	Sous-champ code d'altitude	ME	3.1.2.8.6.3.1.2
AIS	Sous-champ identification d'aéronef	MB	3.1.2.9.1.1
ATS	Sous-champ type d'altitude	MB	3.1.2.8.6.8.2
BDS 1	Sous-champ 1 sélecteur de données Comm-B	MB	3.1.2.6.11.2.1
BDS 2	Sous-champ 2 sélecteur de données Comm-B	MB	3.1.2.6.11.2.1
IDS	Sous-champ indicatif d'identificateur	UM	3.1.2.6.5.3.1
IIS	Sous-champ identificateur d'interrogateur	SD UM	3.1.2.6.1.4.1, alinéa a) 3.1.2.6.5.3.1
LOS	Sous-champ verrouillage	SD	3.1.2.6.1.4.1, alinéa d)
LSS	Sous-champ surveillance de verrouillage	SD	3.1.2.6.1.4.1, alinéa g)
MBS	Sous-champ Comm-B multisite	SD	3.1.2.6.1.4.1, alinéa c)
MES	Sous-champ ELM multisite	SD	3.1.2.6.1.4.1, alinéa c)
OVC	Commande de recouvrement	SD	3.1.2.6.1.4.1, alinéa i)
RCS	Sous-champ commande de cadence	SD	3.1.2.6.1.4.1, alinéa f)
RRS	Sous-champ demande de réponse	SD	3.1.2.6.1.4.1, alinéas e) et g)
RSS	Sous-champ statut de réservation	SD	3.1.2.6.1.4.1, alinéa c)
SAS	Sous-champ antenne de surface	SD	3.1.2.6.1.4.1, alinéa f)
SCS	Sous-champ possibilité en matière de squitters	MB	3.1.2.6.10.2.2.1
SIC	Sous-champ prise en charge de l'identificateur de surveillance	MB	3.1.2.6.10.2.2.1
SIS	Sous-champ identificateur de surveillance	SD	3.1.2.6.1.4.1, alinéa g)

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 17 de 133 1 Janvier 2016

Tableau 3-4. Définition des sous-champs			
Sous-champ			
Indicatif	Fonction	Champ	Référence (§)
SRS	Sous-champ demande de segment	MC	3.1.2.7.7.2.1
SSS	Sous-champ état de surveillance	ME	3.1.2.8.6.3.1.1
TAS	Sous-champ accusé de réception de transmission	MD	3.1.2.7.4.2.6
TCS	Sous-champ commande de type	SD	3.1.2.6.1.4.1, alinéa f)
TMS	Sous-champ message tactique	SD	3.1.2.6.1.4.1, alinéa d)
TRS	Sous-champ cadence d'émission	MB	3.1.2.8.6.8.1

3.1.2.1.5.1 INTERROGATION INTERMODES

3.1.2.1.5.1.1 Interrogation « appel général » modes A/C/S. Cette interrogation doit se composer de trois impulsions : P₁, P₃, et la P₄ longue que représente la Figure 3-3. Une ou deux impulsions de commande (P₂ seule, ou P₁ et P₂) doivent être transmises à l'aide d'un diagramme d'antenne distinct pour supprimer les réponses d'aéronefs se trouvant dans les lobes secondaires de l'antenne de l'interrogateur.

Note.— L'interrogation « appel général » modes A/C/S déclenche une réponse mode A ou mode C (selon l'espacement entre les impulsions P_1 et P_3) d'un transpondeur modes A/C parce qu'il ne reconnaît pas l'impulsion P_4 . Le transpondeur mode S reconnaît l'impulsion P_4 longue et transmet une réponse mode S. Ce type d'interrogation était initialement destiné à être utilisé par des interrogateurs isolés ou des agrégats d'interrogateurs. Le verrouillage pour cette interrogation était basé sur l'utilisation de II = 0. Le développement du sous-réseau mode S impose maintenant l'utilisation d'un code II non égal à zéro pour les communications. Pour cette raison, l'utilisation de II = 0 a été réservée pour une forme d'acquisition mode S qui utilise la méthode stochastique/l'annulation du verrouillage (§ 3.1.2.5.2.1.4 et 3.1.2.5.2.1.5). L'« appel général » modes A/C/S ne peut pas être utilisé avec un fonctionnement en mode S intégral étant donné que II = 0 ne peut être verrouillé que pendant des périodes de courte durée (§ 3.1.2.5.2.1.5.2.1). Cette interrogation ne peut pas être utilisée avec la méthode stochastique/l'annulation du verrouillage, étant donné que la probabilité de réponse ne peut pas être spécifiée.

- 3.1.2.1.5.1.1.1 Les interrogations « appel général » modes A/C/S ne doivent plus être utilisées à partir du 1er janvier 2020.
- Note 1.— L'emploi des interrogations « appel général » modes A/C/S ne permet pas d'utiliser l'annulation de verrouillage stochastique et ne peut donc pas assurer une bonne probabilité d'acquisition dans les régions à forte densité de circulation ou lorsque d'autres interrogateurs verrouillent le transpondeur sur II=0 pour une acquisition complémentaire.
- Note 2.— Les réponses aux interrogations « appel général » modes A/C/S ne seront plus prises en charge par l'équipement certifié le 1^{er} janvier 2020 ou après, afin de réduire la pollution RF générée par les réponses déclenchées par la fausse détection d'interrogations « appel général » modes A/C/S dans d'autres types d'interrogation.
- 3.1.2.1.5.1.2 *Interrogation « appel général » modes A/C seulement*. Cette interrogation doit être identique à la précédente, à ceci près que l'on doit utiliser l'impulsion P₄ courte.
- Note.— L'interrogation « appel général » modes A/C seulement déclenche une réponse mode A ou mode C d'un transpondeur modes A/C. Le transpondeur mode S reconnaît l'impulsion P_4 courte et ne répond pas à cette interrogation.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 18 de 133 1 Janvier 2016

- 3.1.2.1.5.1.3 *Intervalles entre impulsions*. Les intervalles entre les impulsions P_1 , P_2 et P_3 doivent avoir les valeurs définies aux § 3.1.1.4.3 et 3.1.1.4.4. L'intervalle entre les impulsions P_3 et P_4 doit être de 2 ± 0,05 μ s.
- 3.1.2.1.5.1.4 Amplitudes des impulsions. Les amplitudes respectives des impulsions P_1 , P_2 et P_3 doivent être conformes aux dispositions du § 3.1.1.5. L'amplitude de P_4 doit être égale à celle de P_3 à 1 dB près.
- 3.1.2.1.5.2 Interrogation mode S. L'interrogation mode S doivent se composer de trois impulsions : P_1 , P_2 et P_6 , comme le représente la Figure 3-4.

Note.— L'impulsion P_6 est précédée d'une paire P_1 - P_2 qui supprime les réponses des transpondeurs modes A/C de manière à éviter les chevauchements synchrones dus au déclenchement aléatoire en cas d'interrogation mode S. L'inversion de phase synchro de P_6 déclenche la démodulation d'une série d'intervalles de temps (éléments) de 0,25 μ s. Cette série d'éléments commence 0,5 μ s après l'inversion de phase synchro et se termine 0,5 μ s avant le bord arrière de P_6 . Une inversion de phase peut ou non précéder chaque élément pour coder sa valeur d'information binaire.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 19 de 133 1 Janvier 2016

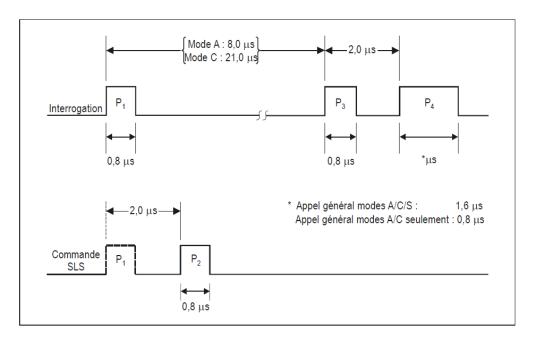


Figure 3-3. Séquence d'impulsions d'interrogation intermodes

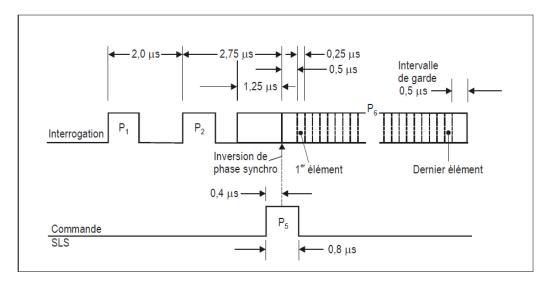


Figure 3-4. Séquence d'impulsions d'interrogation mode S

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 20 de 133 1 Janvier 2016

- 3.1.2.1.5.2.1 Suppression des lobes secondaires en mode S. L'impulsion P_5 doit être utilisée avec l'interrogation « appel général » mode S seulement (UF = 11, voir § 3.1.2.5.2) pour empêcher le déclenchement de réponses des aéronefs dans les lobes secondaires et arrière de l'antenne (§ 3.1.2.1.5.2.5). Si l'impulsion P_5 est transmise, ceci doit se faire à l'aide d'un diagramme d'antenne distinct.
- Note 1.— L'action de P_5 est automatique. Sa présence, si son amplitude est suffisante au point de réception, occulte l'inversion de phase synchro de P_6 .
 - Note 2.— L'impulsion P₅ peut être utilisée avec d'autres interrogations mode S.
- 3.1.2.1.5.2.2 Inversion de phase synchro. La première inversion de phase de l'impulsion P_6 doit être l'inversion de phase synchro. Elle constitue le premier repère de synchronisation pour les opérations suivantes du transpondeur qui sont liées à l'interrogation.
- 3.1.2.1.5.2.3 Inversions de phase de données. Chaque inversion de phase de données ne doit se produire qu'à un intervalle de temps (N fois 0,25) plus ou moins 0,02 µs (N étant égal ou supérieur à 2) après l'inversion de phase synchro. L'impulsion P_6 de 16,25 µs doit contenir au maximum 56 inversions de phase de données. L'impulsion P_6 de 30,25 µs doit contenir au maximum 112 inversions de phase de données. Le dernier élément, c'est-à-dire l'intervalle de 0,25 µs suivant la dernière position d'inversion de phase de données, doit être suivi d'un intervalle de garde de 0,5 µs.
- Note.— L'intervalle de garde de 0,5 µs suivant le dernier élément empêche le bord arrière de P_6 de gêner le processus de démodulation.
- 3.1.2.1.5.2.4 Intervalles. L'intervalle entre les impulsions P_1 et P_2 doit être égal à $2\pm0.05~\mu s$. L'intervalle entre le bord avant de P_2 et l'inversion de phase synchro de P_6 doit être égal à $2.75\pm0.05~\mu s$. Le bord avant de P_6 doit se situer à $1.25\pm0.05~\mu s$ avant l'inversion de phase synchro. Si elle est transmise, l'impulsion P_5 doit être centrée sur l'inversion de phase synchro ; le bord avant de P_5 doit se situer à $0.4\pm0.05~\mu s$ avant l'inversion de phase synchro.
- 3.1.2.1.5.2.5 Amplitudes des impulsions. L'amplitude de P_2 et l'amplitude de la première microseconde de P_6 doivent être supérieures à l'amplitude de $P_1 0.25$ dB. À l'exclusion des transitoires d'amplitude associées aux inversions de phase, la variation d'amplitude de P_6 doit être inférieure à 1 dB et la variation d'amplitude entre deux éléments successifs de P_6 doit être inférieure à 0,25 dB. L'amplitude rayonnée de P_5 à l'antenne du transpondeur doit être :
 - a) égale ou supérieure à l'amplitude rayonnée de P₆ provenant des émissions en lobe secondaire de l'antenne qui rayonne P₆ ;
 - b) inférieure de plus de 9 dB à l'amplitude rayonnée de P₆ à l'intérieur de l'arc d'interrogation désiré.

3.1.2.2 CARACTERISTIQUES DES SIGNAUX ELECTROMAGNETIQUES DE REPONSE

- 3.1.2.2.1 Fréquence porteuse des réponses. La fréquence porteuse de toutes les réponses (transmissions descendantes) provenant de transpondeurs fonctionnant en mode S doit être de 1 090 \pm 1 MHz.
- 3.1.2.2.2 *Spectre de réponse*. Le spectre d'une réponse mode S autour de la fréquence porteuse ne doit pas dépasser les limites spécifiées à la Figure 3-5.
- 3.1.2.2.3 *Polarisation*. La polarisation des transmissions de réponse doit nominalement être verticale.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 21 de 133 1 Janvier 2016

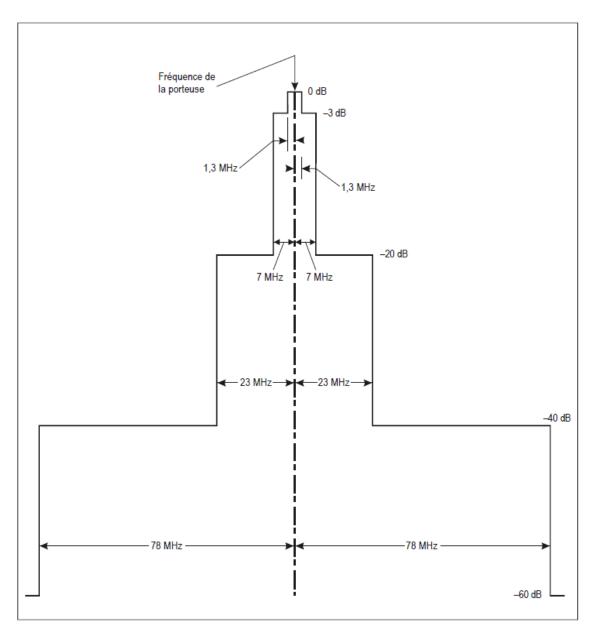


Figure 3-5. Limites du spectre pour le transpondeur

Note.— Cette figure montre le spectre centré sur la fréquence porteuse ; le spectre se décalera donc en entier de plus moins 1 MHz avec la fréquence porteuse.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 22 de 133 1 Janvier 2016

- 3.1.2.2.4 *Modulation*. Une réponse mode S doit se composer d'un préambule et d'un bloc de données. Le préambule doit être formé d'une séquence de quatre impulsions et le bloc de données doit être soumis à une modulation binaire en position d'impulsions au débit de 1 mégabit par seconde.
- 3.1.2.2.4.1 *Formes d'impulsions*. Les formes d'impulsions doivent être conformes aux valeurs du Tableau 3-2. Toutes ces valeurs sont données en microsecondes.
- 3.1.2.2.5 *Réponse mode S*. La réponse mode S doit être conforme à la Figure 3-6. Le bloc de données des réponses mode S doit se composer de 56 ou 112 bits d'information.

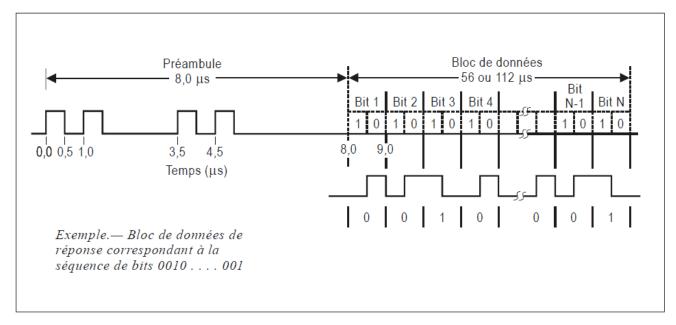


Figure 3-6. Réponse mode S

- 3.1.2.2.5.1 Intervalles entre impulsions. Toutes les impulsions de réponse doivent commencer à un multiple déterminé de 0,5 μs à partir de la première impulsion transmise. Dans tous les cas, la tolérance doit être de $\pm 0,05$ μs .
- 3.1.2.2.5.1.1 *Préambule de réponse*. Le préambule doit se composer de quatre impulsions ayant chacune une durée de 0,5 µs. Les intervalles entre la première impulsion transmise et la deuxième, la troisième et la quatrième doivent respectivement être de 1, 3,5 et 4,5 µs.
- 3.1.2.2.5.1.2 Impulsions de données de réponse. Le bloc de données de réponse doit commencer 8 µs après le bord avant de la première impulsion transmise, et 56 ou 112 intervalles de 1 µs doivent être assignés à chaque transmission. Une impulsion de 0,5 µs doit être transmise dans la première ou la deuxième moitié de chaque intervalle. Si une impulsion transmise dans la deuxième moitié d'un intervalle est suivie d'une autre impulsion transmise dans la première moitié de l'intervalle suivant, il doit y avoir fusion de ces deux impulsions et une impulsion de 1 µs doit être transmise.
- 3.1.2.2.5.2 *Amplitudes des impulsions*. La variation d'amplitude entre une impulsion et n'importe quelle autre impulsion d'une réponse mode S ne doit pas dépasser 2 dB.
 - 3.1.2.3 STRUCTURE DES DONNEES MODE S
 - 3.1.2.3.1 CODAGE DES DONNEES

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 23 de 133 1 Janvier 2016

- 3.1.2.3.1.1 Données d'interrogation. Le bloc de données d'interrogation doit se composer de la séquence de 56 ou 112 éléments d'information située après les inversions de phase à l'intérieur de l'impulsion P_6 (§ 3.1.2.1.5.2.3). Une inversion de phase de 180 degrés de la porteuse précédant un élément caractérise cet élément comme un bit UN. L'absence d'inversion de phase dans cette position dénote un bit ZERO.
- 3.1.2.3.1.2 Données de réponse. Le bloc de données de réponse doit se composer de 56 ou 112 bits de données formés par codage PPM binaire des données de réponse (§ 3.1.2.2.5.1.2). Une impulsion transmise dans la première moitié de l'intervalle représente un bit UN, tandis qu'une impulsion transmise dans la seconde moitié représente un bit ZERO.
- 3.1.2.3.1.3 *Numérotation des bits*. Les bits doivent être numérotés dans l'ordre de leur transmission, à partir du bit 1. Sauf indication contraire, les valeurs numériques codées par groupes (champs) de bits doivent l'être à l'aide de la notation binaire positive et le premier bit transmis doit être le bit de poids fort (MSB). L'information doit être codée dans des champs comportant au moins un bit.
- Note.— Dans la description des formats mode S, le nombre décimal équivalant au code binaire formé par la séquence de bits d'un champ sert à désigner la fonction ou la commande de champ.

3.1.2.3.2 FORMATS DES INTERROGATIONS ET DES REPONSES MODE S

- Note.— Les Figures 3-7 et 3-8 récapitulent tous les formats d'interrogation et de réponse mode S. Le Tableau 3-3 récapitule tous les champs qui apparaissent dans les formats montants et descendants, tandis que le Tableau 3-4 récapitule tous les sous-champs.
- 3.1.2.3.2.1 Champs essentiels. Toutes les transmissions mode S doivent contenir deux champs essentiels. L'un de ces champs est un descripteur qui définit uniquement le format de la transmission. Il doit apparaître au début de la transmission, quel que soit le format. Les descripteurs sont désignés par les champs UF (format montant) ou DF (format descendant). Le deuxième champ essentiel doit être un champ de 24 bits qui doit apparaître à la fin de chaque transmission et doit contenir l'information de parité. Dans tous les formats montants et dans les formats descendants actuellement définis, l'information de parité doit apparaître en surimpression soit sur l'adresse d'aéronef (§ 3.1.2.4.1.2.3.1), soit sur l'identificateur d'interrogateur, conformément au § 3.1.2.3.3.2. Les indicatifs sont AP (adresse/parité) ou PI (parité/identificateur d'interrogateur).
- Note.— L'espace de codage restant sert à transmettre les champs de mission. À chaque fonction donnée correspond un ensemble donné de champs de mission. Les champs de mission mode S comportent un indicatif à deux lettres. Des sous-champs peuvent apparaître à l'intérieur des champs de mission. Les sous-champs mode S sont désignés par des indicatifs à trois lettres.
- 3.1.2.3.2.1.1 *UF Format montant (Uplink format)*. Ce champ (qui comporte 5 bits sauf dans le format 24 où il en comporte 2) sert de descripteur du format montant dans toutes les interrogations mode S et doit être codé conformément à la Figure 3-7.
- 3.1.2.3.2.1.2 *DF Format descendant (Downlink format)*. Ce champ (qui comporte 5 bits sauf dans le format 24 où il en comporte 2) sert de descripteur du format descendant dans toutes les réponses mode S et doit être codé conformément à la Figure 3-8.
- 3.1.2.3.2.1.3 *AP Adresse/parité*. Ce champ de 24 bits (33-56 ou 89-112) doit apparaître dans tous les formats montants et dans les formats descendants actuellement définis, sauf pour la réponse « appel général » mode S seulement (DF = 11). Ce champ doit contenir les bits de parité en surimpression sur l'adresse d'aéronef, conformément au § 3.1.2.3.3.2.
- 3.1.2.3.2.1.4 *PI Parité/identificateur d'interrogateur*. Ce champ descendant de 24 bits (33-56) ou (89-112) doit comporter les bits de parité en surimpression sur le code d'identité d'interrogateur, conformément au § 3.1.2.3.3.2, et doit apparaître dans la réponse « appel général » mode S (DF = 11) et dans le squitter long (DF = 17 ou DF = 18). Si le message répond à un appel général modes A/C/S, à un « appel général » mode S

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 24 de 133 1

Janvier 2016

seulement avec champ CL (§ 3.1.2.5.2.1.3) et champ IC (§ 3.1.2.5.2.1.2) égaux à 0, ou s'il s'agit d'un squitter d'acquisition ou d'un squitter long (§ 3.1.2.8.5, 3.1.2.8.6 ou 3.1.2.8.7), les codes II et SI doivent être 0.

3.1.2.3.2.1.5 DP — Parité des données (Data parity). Ce champ descendant de 24 bits (89 – 112) doit contenir la parité en superposition sur un champ « AA modifié », qui est établi en effectuant une sommation modulo 2 (p. ex., fonction OU exclusif) des 8 bits les plus significatifs de l'adresse discrète et de BDS1, BDS2, BDS1 (3.1.2.6.11.2.2) et BDS2 (3.1.2.6.11.2.3) étant fournis par le « RR » (3.1.2.6.1.2) et le « RRS » (3.1.2.6.1.4.1), comme il est spécifié aux § 3.1.2.6.11.2.2 et 3.1.2.6.11.2.3.

Exemple:

⊕ « » prescrivant une addition modulo 2.

Le champ « AA modifié » qui en résulte représente la séquence de 24 bits (a₁, a₂...a₂₄) qui doit être utilisée pour générer le champ DP conformément au § 3.1.2.3.3.2.

Le champ DP doit être utilisé dans les réponses DF=20 et DF=21 si le transpondeur est capable de prendre en charge le champ DP et si le bit de commande de recouvrement [OVC, § 3.1.2.6.1.4.1, alinéa i)] est mis à 1 dans l'interrogation qui demande la transmission descendante de registres GICB.

3.1.2.3.2.2 Espace de codage non attribué. L'espace de codage non attribué doit contenir uniquement des bits ZERO transmis par les interrogateurs et les transpondeurs.

Note.— Certains espaces de codage indiqués comme non attribués dans la présente section sont réservés pour d'autres applications, par exemple les systèmes anticollision embarqués (ACAS), les liaisons de données, etc.

- 3.1.2.3.2.3 Code zéro et codes non attribués. L'attribution d'un code zéro dans tous les champs définis indique que ces champs n'appellent aucune réponse. De même, si des codes ne sont pas attribués à l'intérieur de ces champs, cela indique qu'aucune réponse n'est exigée.
- Note.— Les dispositions des § 3.1.2.3.2.2 et 3.1.2.3.2.3 garantissent que, lorsque des codes seront ultérieurement attribués dans les espaces de codage où il n'y en avait pas précédemment, cela ne créera pas d'ambiguïté. En d'autres termes, l'équipement mode S dans lequel le nouveau codage n'aura pas été mis en œuvre indiquera clairement qu'aucune information n'est transmise dans l'espace de codage nouvellement attribué.
- 3.1.2.3.2.4 Formats réservés à l'usage militaire. Les autorités militaires compétentes doivent veiller à ce que les formats montants ne sont utilisés que pour des interrogations à adressage sélectif et à ce que les émissions de formats montants ou descendants ne dépassent pas les spécifications de ce RAS relatives à la puissance RF, au taux d'interrogation, au taux de réponse et à la cadence des squitters.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 25 de 133 1 Janvier 2016

Figure 3-7. Récapitulation des formats d'interrogation (montants) mode S

N° de format	UF									
0	00000	3	RL:1	4	AQ:1	DS	8:8	10	AP:24	Surveillance air-air courte (ACAS)
1	00001				27 o	u 83			AP :24	Réservé
2	00010				27 o	u 83			AP :24	Réservé
3	00011				27 o	u 83			AP :24	Réservé
4	00100	PC	D:3	F	RR:5	DI	1:3	SD:16	AP :24	Surveillance, demande d'altitude
5	00101	PC	C:3	F	RR:5	DI	1:3	SD:16	AP :24	Surveillance, demande d'identité
6	00110				27 o	u 83			AP :24	Réservé
7	00111				27 o	u 83			AP :24	Réservé
8	01000				27 o	u 83			AP :24	Réservé
9	01001				27 o	u 83			AP :24	Réservé
10	01010				27 o	u 83			AP :24	Réservé
11	01011	PF	R:4		IC:4	CL	L:3	16	AP:24	Appel général Mode S seulement
12	01100	27 ou 83 AP :2							AP :24	Réservé
13	01101				27 o	u 83			AP :24	Réservé
14	01110				27 o	u 83			AP :24	Réservé
15	01111				27 o	u 83			AP :24	Réservé
16	10000	3	RL:1	4	AQ:1	18		MU:56	AP :24	Surveillance air-air longue (ACAS)
17	10001				27 o	u 83			AP :24	Réservé
18	10010				27 o	u 83			AP :24	Réservé
19	10011				27 o	u 83			AP :24	Réservé pour usage militaire
20	10100	PC:3	RR:5		DI:3	SD	1:16	MA:56	AP:24	Comm-A, demande d'altitude
21	10101	PC:3	RR:5		DI:3	SD):16	MA:56	AP:24	Comm-A, demande d'identité
22	10110				27 o	u 83			AP:24	Réservé pour usage militaire
23	10111				27 o	u 83			AP:24	Réservé
24	11	RC:2 NC:4					MD:80			Comm-C (ELM)

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 26 de 133 1 Janvier 2016

NOTES:

1. XX:M

champ « XX » auquel sont assignés M bits.

2. [N]

espace de codage non assigné avec N bits disponibles. Ces bits seront codés 0 pour la transmission.

- 3. Pour les formats montants (UF) de 0 à 23, le numéro correspond au code binaire des 5 premiers bits de l'interrogation. Le numéro 24 est défini comme étant le format commençant par « 11 » aux deux premières positions de bit, tandis que les 3 bits suivants varient selon la teneur de l'interrogation.
- 4. Tous les formats sont représentés pour donner une image complète, mais un certain nombre d'entre eux ne sont pas utilisés. Les formats qui n'ont pas actuellement d'application ne sont pas définis quant à leur longueur. Selon l'assignation qui leur sera donnée ultérieurement, ils pourront être courts (56 bits) ou longs (112 bits). Les formats réservés pour les différents types d'application du mode S sont définis plus loin.
- 5. Les champs PC, RR, DI et SD ne s'appliquent pas aux interrogations de diffusion de Comm-A.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 27 de 133 1 Janvier 2016

Figure 3-8. Récapitulation des formats de réponse (descendants) mode S

N° de format	DF										
0	00000	VS:1	CC:1	1	SL:3	2	RI:4	2	AC:13	AP:24	Surveillance air-air courte (ACAS)
1	00001				27 c	ou 83				AP :24	Réservé
2	00010				27 c	u 83				AP :24	Réservé
3	00011				27 c	u 83				AP :24	Réservé
4	00100	FS	:23	DF	R:5	UN	И:6	AC	:13	AP :24	Surveillance, réponse d'altitude
5	00101	FS	S:3	DF	R:5	UN	И:6	ID	:13	AP :24	Surveillance, réponse d'identité
6	00110				27 c	u 83				AP :24	Réservé
7	00111				27 c	ou 83				AP :24	Réservé
8	01000				27 c	ou 83				AP :24	Réservé
9	01001				27 c	u 83				AP :24	Réservé
10	01010				27 c	ou 83				AP :24	Réservé
11	01011		CA	\:3			AA	\:24		PI:24	Réponse « appel général »
12	01100				27 c	ou 83				AP :24	Réservé
13	01101				27 c	u 83				AP :24	Réservé
14	01110				27 c	ou 83				AP :24	Réservé
15	01111				27 c	u 83				AP :24	Réservé
16	10000	VS :1	2	SL:3	2	RI :4	2	AC :13	MV :56	AP :24	Surveillance air-air longue (ACAS)
17	10001	CA	A :3		AA :24	ME :56				PI :24	Squitter long
18	10010	CA	A :3		AA :24	ME :56				PI :24	Squitter long/non-transpondeur
19	10011	AF:3 104								Squitter long militaire	
20	10100	FS:3	DR:5	UN	И:6	AC	:13	MB:56		AP:24 DP :24	Comm-B, réponse d'altitude (voir Note 5)
21	10101	FS:3	DR:5	110	И:6	ID	:13	ME	3:56	AP:24	Comm-B, réponse d'identité
21	10101	10.0	DIV.3	OI*	vi.o	10.	.10	IVIL		DP :24	(voir Note 5)
22	10110				27 c	ou 83				P:24	Réservé pour usage militaire
23	10111				27 c	u 83				P:24	Réservé
24	11	1		KE	E:1	NE	D:4	MD:80		AP:24	Comm-D (ELM)

NOTES:

1. Champ « XX » auquel sont assignés M bits.

correspond au code binaire des 5 premiers bits de la réponse. Le numéro 24 est défini comme étant le format commençant par « 11 » aux deux premières positions de bit, tandis que les

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 28 de 133 1 Janvier 2016

P:24

champ de 24 bits réservé pour l'information de parité.

espace de codage non assigné avec N bits disponibles.

Ces bits seront codés 0 pour la transmission,

3. Pour les formats descendants (DF) de 0 à 23, le numéro

5. La parité de données (DP) (§ 3.1.2.3.2.1.5) est employée si elle a été commandée par l'OVC [§ 3.1.2.6.1.4.1, alinéa i)] conformément au § 3.1.2.6.11.2.5.

3 bits suivants varient selon la teneur de la réponse.

4. Tous les formats sont représentés pour donner une image complète, mais un certain nombre d'entre eux ne sont pas utilisés. Les formats qui n'ont pas actuellement d'application ne sont pas définis quant à leur longueur. Selon l'assignation qui leur sera donnée ultérieurement, ils pourront être courts (56 bits) ou longs (112 bits). Les formats réservés pour les différents types d'application du mode S sont définis plus loin.

3.1.2.3.3 PROTECTION CONTRE LES ERREURS

- 3.1.2.3.3.1 *Technique*. Le codage de contrôle de parité doit être utilisé dans les interrogations et les réponses mode S pour assurer une protection contre les erreurs.
- 3.1.2.3.3.1.1 Séquence de contrôle de parité. Une séquence de 24 bits de contrôle de parité doit être produite selon la règle définie au § 3.1.2.3.3.1.2 et intégrée dans le champ formé par les 24 derniers bits de toutes les transmissions mode S. Les 24 bits de contrôle de parité doivent être combinés soit au codage de l'adresse, soit au codage de l'identificateur d'interrogateur, conformément au § 3.1.2.3.3.2. La combinaison ainsi obtenue constitue soit le champ AP (adresse/parité § 3.1.2.3.2.1.3), soit le champ PI (parité/identificateur d'interrogateur § 3.1.2.3.2.1.4).
- 3.1.2.3.3.1.2 Etablissement de la séquence de contrôle de parité. La séquence de 24 bits de contrôle de parité $(p_1, p_2, \ldots, p_{24})$ doit être produite à partir de la séquence des bits d'information (m_1, m_2, \ldots, m_k) , dans laquelle k est égal à 32 ou à 88 selon qu'il s'agit d'une transmission courte ou longue. On doit utiliser à cet effet un code résultant du polynôme suivant :

$$G(x) = 1 + x^3 + x^{10} + x^{12} + x^{13} + x^{14} + x^{15} + x^{16} + x^{17} + x^{18} + x^{19} + x^{20} + x^{21} + x^{22} + x^{23} + x^{24}$$

Lorsque, par application de l'algèbre des polynômes binaires, on divise x^{24} [M(x)] par G(x), dans lequel la séquence d'information M(x) est :

$$m_k + m_{k-1} \, x + m_{k-2} \, x^2 + \ldots + m_1 x^{k-1}$$

on obtient un quotient et un reste R(x) de degré inférieur à 24. La séquence que constitue ce reste représente la séquence de contrôle de parité. Pour toute valeur de i comprise entre 1 et 24, le bit de parité p_i est le coefficient de x^{24-i} dans R(x).

Note.— Si l'on multiplie M(x) par x^{24} , cela a pour effet d'ajouter 24 bits ZERO à la fin de la séquence.

3.1.2.3.3.2 Etablissement des champs AP et PI. On doit utiliser des séquences adresse/parité différentes pour la liaison montante et la liaison descendante.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 29 de 133 1

Janvier 2016

Note.— La séquence montante convient pour le décodage par les transpondeurs. La séquence descendante facilite la correction d'erreur lors du décodage sur liaison descendante.

Le code utilisé pour l'établissement du champ AP sur liaison montante doit être formé comme il est spécifié ci-dessous, à partir de l'adresse d'aéronef (§ 3.1.2.4.1.2.3.1.1), de l'adresse « appel général » (§ 3.1.2.4.1.2.3.1.2) ou de l'adresse de diffusion (§ 3.1.2.4.1.2.3.1.3).

Le code utilisé pour l'établissement du champ AP sur liaison descendante doit être formé directement à partir de la séquence de 24 bits d'adresse d'aéronef (a_1, a_2, \ldots, a_{24}), dans laquelle a_i est le i-ème bit transmis dans le champ adresse d'aéronef (AA) d'une réponse « appel général » (§ 3.1.2.5.2.2.2).

Le code utilisé pour l'établissement du champ PI sur liaison descendante doit être formé d'une séquence de 24 bits (a₁, a₂, ..., a₂₄), dans laquelle les 17 premiers bits ont la valeur 0, les 3 bits suivants sont une réplique du champ étiquette de code (CL) (§ 3.1.2.5.2.1.3) et les 4 derniers bits reprennent ceux du champ code d'interrogateur (IC) (§ 3.1.2.5.2.1.2).

Note.— Le code PI n'est pas utilisé dans les transmissions montantes.

Une forme modifiée de cette séquence $(b_1, b_2, \ldots, b_{24})$ doit servir à l'établissement du champ AP sur liaison montante. Le bit b_i est le coefficient de x^{48-i} dans le polynôme G(x)A(x) où :

$$A(x) = a_1x^{23} + a_2x^{22} + ... + a_{24}$$

et

G(x) est conforme à la définition qu'en donne le § 3.1.2.3.3.1.2.

Dans l'adresse d'aéronef, ai doit être constituée par le i-ème bit transmis dans le champ AA d'une réponse « appel général ». Dans les adresses « appel général » et de diffusion, ai doit être égal à 1 pour toutes les valeurs de i.

3.1.2.3.3.2.1 *Ordre de transmission montante*. La séquence de bits transmise dans le champ AP sur liaison montante est la suivante :

$$t_{k+1}, t_{k+2} \dots t_{k+24}$$

dans laquelle les bits sont numérotés dans l'ordre de leur transmission, en commençant par k + 1. Dans les transmissions montantes:

$$t_{k+i} = b_i \oplus p_i$$

où « ⊕ » indique une addition modulo – 2 : i = 1 représente le premier bit transmis dans le champ AP.

3.1.2.3.3.2.2 Ordre de transmission descendante. La séquence de bits transmise dans les champs AP et PI sur liaison descendante est la suivante :

$$t_{k+1}, t_{k+2} \dots t_{k+24}$$

dans laquelle les bits sont numérotés dans l'ordre de leur transmission, en commençant par k + 1. Dans les transmissions descendantes:

$$t_{k+i} = a_i \oplus p_i$$

où « \bigoplus » indique une addition modulo – 2 : i = 1 représente le premier bit transmis dans le champ AP ou PI.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 30 de 133 1

Janvier 2016

3.1.2.4 PROTOCOLE GENERAL D'INTERROGATION-REPONSE

- 3.1.2.4.1 *Cycle de transaction du transpondeur*. Un cycle de transaction doit commencer lorsque le transpondeur SSR mode S a reconnu une interrogation. Le transpondeur doit alors évaluer l'interrogation et déterminer s'il doit l'accepter. S'il l'accepte, il doit traiter l'interrogation reçue et transmettre une réponse s'il y a lieu. Le cycle de transaction doit se terminer :
 - a) lorsque l'une quelconque des conditions nécessaires d'acceptation n'existe pas, ou
 - b) lorsqu'une interrogation a été acceptée et que le transpondeur a :
 - 1) traité complètement l'interrogation acceptée si aucune réponse n'est nécessaire, ou
 - 2) terminé la transmission d'une réponse.

Un nouveau cycle de transaction ne doit jamais commencer avant que le cycle précédent ne soit achevé.

- 3.1.2.4.1.1 *Reconnaissance de l'interrogation*. Les transpondeurs SSR mode S doivent être capables de reconnaître les types d'interrogation suivants :
 - a) modes A et C;
 - b) intermodes;
 - c) mode S.

Note.— Le processus de reconnaissance dépend du niveau du signal d'entrée et de la gamme dynamique spécifiée (§ 3.1.2.10.1).

3.1.2.4.1.1.1 Reconnaissance des interrogations mode A et mode C. Une interrogation mode A ou mode C doit être reconnue lorsqu'une paire d'impulsions P_1 - P_3 répondant aux conditions du § 3.1.1.4 a été reçue et que le bord avant d'une impulsion P_4 d'amplitude supérieure à l'amplitude de P_3 moins 6 dB n'a pas été reçu dans l'intervalle de 1,7 à 2,3 µs après le bord arrière de P_3 .

Si une paire d'impulsions de suppression P_1 - P_2 et une interrogation mode A ou mode C sont reconnues simultanément, le transpondeur doit être mis en état de suppression. Aucune interrogation ne doit être reconnue comme interrogation mode A ou mode C si le transpondeur est en état de suppression (§ 3.1.2.4.2). S'il reconnaît simultanément une interrogation mode A et mode C, le transpondeur doit effectuer le cycle de transaction comme s'il n'avait reconnu qu'une interrogation mode C.

- 3.1.2.4.1.1.2 Reconnaissance des interrogations intermodes. Une interrogation intermodes doit être reconnue lorsqu'un triplet d'impulsions P_1 - P_3 - P_4 répondant aux conditions du § 3.1.2.1.5.1 a été reçu. Une interrogation ne doit pas être reconnue comme interrogation intermodes :
 - a) si l'amplitude de réception de l'impulsion à la position P_4 est inférieure de plus de 6 dB à l'amplitude de P_3 ; ou
 - b) si l'intervalle entre les impulsions P₃ et P₄ est supérieur à 2,3 µs ou inférieur à 1,7 µs ; ou
 - c) si l'amplitude de réception de P_1 et P_3 se situe entre le niveau minimal de déclenchement et -45 dBm et que la durée des impulsions P_1 ou P_3 soit inférieure à 0,3 μ s; ou
 - d) si le transpondeur est en état de suppression (§ 3.1.2.4.2).
- Si le transpondeur reconnaît simultanément une paire d'impulsions de suppression P₁-P₂ et une interrogation intermodes mode A ou mode C, il doit être mis en état de suppression.
- 3.1.2.4.1.1.3 Reconnaissance des interrogations mode S. Une interrogation mode S doit être reconnue lorsqu'une impulsion P_6 est reçue avec une inversion de phase synchro dans l'intervalle compris entre 1,20 et 1,30 μ s suivant le bord avant de l'impulsion P_6 . Une interrogation mode S ne doit pas être reconnue si une inversion de phase synchro n'est pas reçue dans l'intervalle compris entre 1,05 et 1,45 μ s suivant le bord avant de P_6 .

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 31 de 133 1 Janvier 2016

- 3.1.2.4.1.2 *Acceptation des interrogations*. La reconnaissance prévue au § 3.1.2.4.1 doit être un préalable de l'acceptation de toute interrogation.
- 3.1.2.4.1.2.1 Acceptation des interrogations mode A et mode C. Les interrogations mode A et mode C doivent être acceptées lorsqu'elles auront été reconnues (§ 3.1.2.4.1.1.1).
 - 3.1.2.4.1.2.2 Acceptation des interrogations intermodes
- 3.1.2.4.1.2.2.1 Acceptation des interrogations « appel général » modes A/C/S. Une interrogation « appel général » modes A/C/S doit être acceptée si le bord arrière de P₄ est reçu dans un intervalle compris entre 3,45 et 3,75 μs après le bord avant de P₃ et si aucun état de verrouillage (§ 3.1.2.6.9) n'empêche cette acceptation. Un « appel général » modes A/C/S ne doit pas être accepté si le bord arrière de P₄ est reçu moins de 3,3 μs ou plus de 4,2 μs après le bord avant de P₃ ou si un état de verrouillage (§ 3.1.2.6.9) empêche son acceptation.
- 3.1.2.4.1.2.2.2 Acceptation des interrogations « appel général » modes A/C seulement. Les transpondeurs mode S ne doivent pas accepter les interrogations « appel général » modes A/C seulement.
- Note.— La condition technique de non-acceptation de l'appel général modes A/C seulement est donnée au paragraphe précédent, qui prescrit le refus des interrogations intermodes lorsque le bord arrière de l'impulsion P_4 est reçu moins de 3,3 µs après le bord avant de l'impulsion P_3 .
- 3.1.2.4.1.2.3 Acceptation des interrogations mode S. Une interrogation mode S ne doit être acceptée que dans les conditions suivantes :
 - a) le transpondeur est capable de traiter le format montant (UF) de l'interrogation (§ 3.1.2.3.2.1.1);
 - b) l'adresse de l'interrogation correspond à l'une des adresses définies au § 3.1.2.4.1.2.3.1, ce qui implique que la parité est établie, selon la définition du § 3.1.2.3.3 ;
 - c) dans le cas d'une interrogation « appel général », aucune condition de verrouillage « appel général » ne s'applique, selon la définition du § 3.1.2.6.9 ;
 - d) le transpondeur est capable de traiter les données transmises sur liaison montante d'une interrogation de surveillance air-air longue (ACAS) (UF=16) et de les présenter à une interface de sortie selon les dispositions du § 3.1.2.10.5.2.2.1.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 32 de 133 1

Janvier 2016

Note.— Une interrogation mode S peut être acceptée si les conditions prévues au § 3.1.2.4.1.2.3, alinéas a) et b), sont remplies et que le transpondeur n'est pas capable de traiter les données montantes d'une interrogation Comm-A (UF = 20 et 21) ni de les présenter à une interface de sortie comme le prescrit le § 3.1.2.10.5.2.2.1.

- 3.1.2.4.1.2.3.1 Adresses. Les interrogations mode S doivent contenir l'une des adresses suivantes :
 - a) adresse d'aéronef;
 - b) adresse « appel général » ;
 - c) adresse de diffusion.
- 3.1.2.4.1.2.3.1.1 Adresse d'aéronef. Si l'adresse d'aéronef est identique à l'adresse extraite d'une interrogation reçue conformément à la procédure du § 3.1.2.3.3.2 et du § 3.1.2.3.3.2.1, l'adresse extraite doit être considérée comme correcte aux fins de l'acceptation de l'interrogation mode S.
- 3.1.2.4.1.2.3.1.2 Adresse « appel général ». Une interrogation « appel général » mode S seulement (format montant UF = 11) doit contenir une adresse, appelée adresse « appel général », composée de 24 bits UN consécutifs. Si l'adresse « appel général » est extraite d'une interrogation reçue avec format UF = 11 conformément à la procédure du § 3.1.2.3.3.2 et du § 3.1.2.3.3.2.1, l'adresse doit être considérée comme correcte aux fins de l'acceptation de l'interrogation « appel général » mode S seulement.
- 3.1.2.4.1.2.3.1.3 Adresse de diffusion. Pour diffuser un message à tous les transpondeurs mode S dans le faisceau de l'interrogateur, on doit utiliser un format montant UF= 20 ou 21 d'interrogation mode S et l'on doit remplacer l'adresse de l'aéronef par une adresse composée de 24 bits UN consécutifs. Si le code UF est 20 ou 21 et si cette adresse de diffusion est extraite d'une interrogation reçue conformément à la procédure du § 3.1.2.3.3.2 et du § 3.1.2.3.3.2.1, l'adresse doit être considérée comme correcte aux fins de l'acceptation d'une interrogation diffusée mode S.
- Note.— Les transpondeurs associés à des systèmes anticollision embarqués acceptent aussi les messages diffusés avec UF = 16.
- 3.1.2.4.1.3 *Réponses des transpondeurs*. Les transpondeurs mode S doivent transmettre les types de réponse suivants :
 - a) réponses mode A et mode C;
 - b) réponses mode S.
- 3.1.2.4.1.3.1 Réponses mode A et mode C. Une réponse mode A (ou mode C) doit être transmise comme il est spécifié au § 3.1.1.6 lorsqu'une interrogation mode A (ou mode C) aura été acceptée.
- 3.1.2.4.1.3.2 *Réponses mode S.* Les réponses aux interrogations autres que mode A et mode C doivent être des réponses mode S.
- 3.1.2.4.1.3.2.1 *Réponses aux interrogations intermodes*. Une réponse mode S avec format descendant DF= 11 doit être transmise conformément aux dispositions du § 3.1.2.5.2.2 lorsqu'une interrogation « appel général » modes A/C/S a été acceptée. L'équipement certifié le 1^{er} janvier 2020 ou après ne doit pas répondre aux interrogations « appel général » modes A/C/S intermodes.
- Note.— Puisque les transpondeurs mode S n'acceptent pas les interrogations « appel général » A/C seulement, aucune réponse n'est émise dans ce cas.
- 3.1.2.4.1.3.2.2 *Réponses aux interrogations mode* S. La teneur en information d'une réponse mode S doit refléter les conditions qui règnent dans le transpondeur après que l'interrogation à laquelle il répond a été complètement traitée. La correspondance entre les formats montants et descendants doit être conforme au sommaire du Tableau 3-5.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 33 de 133 1 Janvier 2016

Note.— Quatre catégories de réponses mode S peuvent être transmises lorsque des interrogations mode S sont reçues :

- a) réponses « appel général » mode S (DF = 11) ;
- b) réponses de surveillance et de communication de longueur standard (DF = 4, 5, 20 et 21);
- c) réponses de communication de longue durée (DF = 24) ;
- d) réponses de surveillance air-air (DF = 0 et 16).
- 3.1.2.4.1.3.2.2.1 Réponses aux interrogations « appel général » SSR mode S seulement. Le format descendant (DF) de la réponse (éventuelle) à une interrogation « appel général » mode S seulement doit être DF = 11. La teneur de la réponse et les règles à suivre pour déterminer s'il y a lieu de répondre doivent être conformes aux dispositions du § 3.1.2.5.
- Note.— Une réponse mode S pourra être transmise ou non lorsqu'une interrogation mode S avec UF = 11 aura été acceptée.
- 3.1.2.4.1.3.2.2.2 Réponses aux interrogations de surveillance et de communication de longueur standard. Une réponse mode S doit être transmise lorsqu'une interrogation mode S avec UF = 4, 5, 20 ou 21 et adresse d'aéronef a été acceptée. La teneur de ces interrogations et de ces réponses doit être conforme aux dispositions du § 3.1.2.6.
- Note.— Si une interrogation mode S avec UF = 20 ou 21 et adresse de diffusion est acceptée, aucune réponse n'est transmise (§ 3.1.2.4.1.2.3.1.3).
- 3.1.2.4.1.3.2.2.3 Réponses aux interrogations de communication de longue durée. Une série de 0 à 16 réponses mode S doit être transmise lorsqu'une interrogation mode S avec UF = 24 aura été acceptée. Le format descendant (DF) de la réponse (éventuelle) doit être DF = 24. Les protocoles définissant le numéro et la teneur des réponses doivent être conformes aux dispositions du § 3.1.2.7.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 34 de 133 1 Janvier 2016

Tableau 3-5. Sommaire des protocoles d'interrogation-réponse

UF interrogation	Conditions spéciales	DF réponse
0	RL (§ 3.1.2.8.1.2) égale à 0	0
	RL (§ 3.1.2.8.1.2) égale à 1	16
4	RR (§ 3.1.2.6.1.2) inférieure à 16	4
	RR (§ 3.1.2.6.1.2) égale ou supérieure à 16	20
5	RR (§ 3.1.2.6.1.2) inférieure à 16	5
	RR (§ 3.1.2.6.1.2) égale ou supérieure à 16	21
11	Transpondeur verrouillé sur le code d'interrogateur, IC (§ 3.1.2.5.2.1.2)	Pas de réponse
	Absence de réponse par décision stochastique (§ 3.1.2.5.4)	Pas de réponse
	Autres conditions	11
20	RR (§ 3.1.2.6.1.2) inférieure à 16	4
	RR (§ 3.1.2.6.1.2) égale ou supérieure à 16	20
	AP contient l'adresse de diffusion (§ 3.1.2.4.1.2.3.1.3)	Pas de réponse
21	RR (§ 3.1.2.6.1.2) inférieure à 16	5
	RR (§ 3.1.2.6.1.2) égale ou supérieure à 16	21
	AP contient l'adresse de diffusion (§ 3.1.2.4.1.2.3.1.3)	Pas de réponse
24	RC (§ 3.1.2.7.1.1) égale à 0 ou 1	Pas de réponse
	RC (§ 3.1.2.7.1.1) égale à 2 ou 3	24

3.1.2.4.1.3.2.2.4 Réponses aux interrogations de surveillance air-air. Une réponse mode S doit être transmise lorsqu'une interrogation mode S avec UF = 0 et une adresse d'aéronef aura été acceptée. La teneur de ces interrogations et de ces réponses doit être conforme aux dispositions du § 3.1.2.8.

3.1.2.4.2 *SUPPRESSION*

- 3.1.2.4.2.1 Effets de la suppression. Un transpondeur en état de suppression (§ 3.1.1.7.4) ne doit pas reconnaître les interrogations mode A, mode C ou intermodes si l'impulsion P₁ seule ou les impulsions P₁ et P₃ de l'interrogation sont reçues pendant l'intervalle de suppression. La suppression ne doit ni influencer sur la reconnaissance ou l'acceptation des interrogations mode S ni sur les réponses à ces interrogations.
- 3.1.2.4.2.2 Paires d'impulsions de suppression. La paire d'impulsions de suppression modes A/C définie au § 3.1.1.7.4.1 doit déclencher la suppression dans un transpondeur mode S quelle que soit la position occupée par cette paire d'impulsions dans un groupe d'impulsions, pourvu que le transpondeur ne soit pas déjà en état de suppression ou en pleine transaction.
- Note.— La paire d'impulsions P_3 - P_4 de l'interrogation « appel général » modes A/C seulement prévient les réponses et déclenche la suppression. De même, le préambule P_1 - P_2 d'une interrogation mode S déclenche la suppression indépendamment de la forme d'onde qui la suit.
- 3.1.2.4.2.3 La suppression en présence d'une impulsion S_1 doit être effectuée conformément au § 3.1.1.7.4.3.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 35 de 133

Janvier 2016

3.1.2.5 TRANSACTIONS « APPEL GENERAL » INTERMODES ET MODE S

3.1.2.5.1 TRANSACTIONS INTERMODES

Note.— Les transactions intermodes permettent la surveillance des aéronefs modes A/C seulement et l'acquisition des aéronefs mode S. L'interrogation « appel général » modes A/C/S permet aux transpondeurs modes A/C seulement et mode S de faire l'objet des mêmes interrogations. L'interrogation « appel général » modes A/C seulement permet de n'obtenir de réponse que des transpondeurs modes A/C. Dans un contexte multisite, l'interrogateur doit transmettre son identificateur dans l'interrogation « appel général » mode S seulement. On emploie donc une paire d'interrogations « appel général » mode S seulement et modes A/C seulement. Les interrogations intermodes sont définies au § 3.1.2.1.5.1 et les protocoles d'interrogation-réponse correspondants sont définis au § 3.1.2.4.

3.1.2.5.2 TRANSACTIONS « APPEL GENERAL » MODE S SEULEMENT

Note.— Ces transactions permettent à la station sol d'obtenir des réponses des aéronefs dotés du mode S, au moyen d'une interrogation adressée à tous ces aéronefs. La réponse utilise le format descendant 11 qui renvoie l'adresse de l'aéronef. Les protocoles d'interrogation-réponse sont définis au § 3.1.2.4.

3.1.2.5.2.1 Interrogation « appel général » mode S seulement, format montant 11

1	6		10	14	17	;	33
UF		PR	IC	CL			AP
	5	9	1	3	16	32	56

Le format de cette interrogation doit comprendre les champs suivants :

Char	np	Référence (§)
UF	format montant	3.1.2.3.2.1.1
PR	probabilité de réponse	3.1.2.5.2.1.1
IC	code d'interrogateur	3.1.2.5.2.1.2
CL	étiquette de code	3.1.2.5.2.1.3
	en réserve — 16 bits	
AΡ	adresse/parité	3.1.2.3.2.1.3

3.1.2.5.2.1.1 *PR* — *Probabilité de réponse*. Ce champ de message montant de 4 bits (6-9) doit contenir les commandes adressées au transpondeur et spécifiant la probabilité de réponse à l'interrogation (§ 3.1.2.5.4). Les codes sont les suivants :

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 36 de 133 1

Janvier 2016

0	signifie répondre avec probabilité de 1
1	signifie répondre avec probabilité de 1/2
2	signifie répondre avec probabilité de 1/4
3	signifie répondre avec probabilité de 1/8
4	signifie répondre avec probabilité de 1/16
5,6 et 7	non assignés
8	signifie ne pas tenir compte du verrouillage, répondre avec probabilité de 1
9	signifie ne pas tenir compte du verrouillage, répondre avec probabilité de 1/2
10	signifie ne pas tenir compte du verrouillage, répondre avec probabilité de 1/4
11	signifie ne pas tenir compte du verrouillage, répondre avec probabilité de 1/8
12	signifie ne pas tenir compte du verrouillage, répondre avec probabilité de 1/16
13, 14 et 15	non assignés

- 3.1.2.5.2.1.2 *IC Code d'interrogateur (Interrogator code*). Ce champ de message montant de 4 bits (10-13) doit contenir soit le code d'identificateur d'interrogateur de 4 bits (§ 3.1.2.5.2.1.2.3) soit les 4 bits inférieurs du code d'identificateur de surveillance de 6 bits (§ 3.1.2.5.2.1.2.4) selon la valeur du champ CL (§ 3.1.2.5.2.1.3).
- 3.1.2.5.2.1.2.1 Chaque fois que c'est possible, l'interrogateur peut fonctionner en n'utilisant qu'un code d'interrogateur.
- 3.1.2.5.2.1.2.2 *Utilisation de codes d'interrogateur multiples par un même interrogateur*. Un interrogateur ne doit pas entrelacer d'interrogations « appel général » mode S seulement en utilisant des codes d'interrogateur différents.
- Note.— Une explication des questions de brouillage RF, des tailles de secteur et des incidences sur les transactions de liaison de données est donnée dans le Manuel de la surveillance aéronautique (Doc 9924).
- 3.1.2.5.2.1.2.3 *II Identificateur d'interrogateur*. Cette valeur de 4 bits définit un code d'identificateur d'interrogateur (II). Des codes II allant de 0 à 15 doivent être affectés aux interrogateurs. La valeur de code II égale à 0 ne doit être utilisée que pour une acquisition complémentaire dans le cadre de la technique d'acquisition basée sur l'annulation du verrouillage (§ 3.1.2.5.2.1.4 et 3.1.2.5.2.1.5). Quand deux codes II sont attribués à un même interrogateur, un des codes doit être utilisé aux fins d'une liaison de données complète.
- Note.— Les deux codes II peuvent permettre une activité de liaison de données limitée, notamment Comm-A à un seul segment, protocoles de diffusion montants et descendants et extraction GICB.
- 3.1.2.5.2.1.2.4 SI Identificateur de surveillance (Surveillance identifier). Cette valeur de 6 bits définit un code d'identificateur de surveillance (SI). Des codes SI allant de 1 à 63 doivent être affectés aux interrogateurs. La valeur de code SI égale à 0 ne doit pas être utilisée. Les codes SI doivent être utilisés avec les protocoles de verrouillage multisite (§ 3.1.2.6.9.1). Les codes SI ne doivent pas être utilisés avec les protocoles de communication multisite (§ 3.1.2.6.11.3.2, 3.1.2.7.4 ou 3.1.2.7.7).
- 3.1.2.5.2.1.3 *CL Etiquette de code (Code label)*. Ce champ montant de 3 bits (14-16) définit le contenu du champ IC.

Codage (système binaire)

000	signifie que le champ IC contient le code II
001	signifie que le champ IC contient les codes SI 1 à 15
010	signifie que le champ IC contient les codes SI 16 à 31
011	signifie que le champ IC contient les codes SI 32 à 47
100	signifie que le champ IC contient les codes SI 48 à 63

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 37 de 133

Janvier 2016

Les autres valeurs du champ CL ne doivent pas être employées.

3.1.2.5.2.1.3.1 Compte rendu de capacité de prise en charge du code d'identificateur de surveillance (SI). Les transpondeurs qui traitent les codes SI (§ 3.1.2.5.2.1.2.4) doivent indiquer cette capacité en positionnant à 1 le bit 35 dans le sous-champ prise en charge de l'identificateur de surveillance (SIC) du champ MB du compte rendu de capacité de liaison de données (§ 3.1.2.6.10.2.2).

3.1.2.5.2.1.4 Fonctionnement basé sur l'annulation du verrouillage

- Note 1.— L'annulation du verrouillage de l'« appel général » mode S seulement sert de base à l'acquisition d'aéronefs mode S pour les interrogateurs auxquels il n'a pas été attribué d'IC unique (code II ou SI) pour le fonctionnement en mode S intégral (acquisition protégée en faisant en sorte qu'aucun autre interrogateur ayant le même IC ne puisse verrouiller la cible dans la même zone de couverture).
 - Note 2.— L'annulation du verrouillage est possible avec n'importe quel IC.
- 3.1.2.5.2.1.4.1 Taux maximal d'interrogation « appel général » mode S seulement. Le taux maximal d'interrogation « appel général » mode S seulement d'un interrogateur utilisant l'acquisition basée sur l'annulation du verrouillage doit dépendre de la probabilité de réponse, comme suit :
 - a) pour une probabilité de réponse égale à 1,0 :
 - le plus petit des deux nombres suivants : 3 interrogations par éclairement de faisceau de 3 dB ou 30 interrogations par seconde ;
 - b) pour une probabilité de réponse égale à 0,5 :
 - le plus petit des deux nombres suivants : 5 interrogations par éclairement de faisceau de 3 dB ou 60 interrogations par seconde ;
 - c) pour une probabilité de réponse égale ou inférieure à 0,25 :
 - le plus petit des deux nombres suivants : 10 interrogations par éclairement de faisceau de 3 dB ou 125 interrogations par seconde.
- Note.— Ces limites ont été définies pour réduire au minimum la pollution RF générée par cette méthode tout en gardant un minimum de réponses pour permettre l'acquisition d'aéronefs à l'intérieur d'un éclairement de faisceau.
- 3.1.2.5.2.1.4.2 L'acquisition passive sans l'emploi d'interrogations « appel général » peut être utilisée à la place de l'annulation de verrouillage.
- Note.— Le Manuel de la surveillance aéronautique (Doc 9924) de l'OACI, Appendice H, contient des éléments indicatifs sur les différentes méthodes d'acquisition passive.
- 3.1.2.5.2.1.4.3 Contenu des champs des interrogations à adressage sélectif utilisées par un interrogateur sans code d'interrogateur assigné. Un interrogateur auquel il n'a pas été assigné de code d'interrogateur discret unique et qui est autorisé à émettre doit utiliser le code II = 0 pour effectuer les interrogations sélectives. En pareil cas, dans les interrogations à adressage sélectif employées dans le cadre de la technique d'acquisition par annulation du verrouillage, le contenu des champs doit être limité aux valeurs suivantes :

UF = 4, 5, 20 ou 21

PC = 0

DI = 7

IIS = C

LOS = 0 sauf comme spécifié au § 3.1.2.5.2.1.5

TMS = 0

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition: Date

Page 38 de 133

Janvier 2016

3.1.2.5.2.1.4.4 Un interrogateur auquel il n'a pas été assigné de code d'interrogateur discret unique et qui est autorisé à émettre en utilisant le code II = 0 ne doit pas tenter d'extraire un message Comm-B déclenché à bord annoncé par DR = 1 ou 3.

Note.— Ces restrictions permettent des transactions de surveillance, des transactions GICB et l'extraction de messages diffusés Comm-B mais empêchent que l'interrogation apporte des changements quelconques aux états de protocole de verrouillage multisite ou de communication du transpondeur.

3.1.2.5.2.1.5 Acquisition complémentaire utilisant II = 0

- Note 1.— La technique d'acquisition définie au § 3.1.2.5.2.1.4 permet d'obtenir rapidement des réponses de la plupart des aéronefs. Comme il s'agit d'un processus fondé sur des probabilités, il faut parfois de nombreuses interrogations pour acquérir les derniers aéronefs d'une grande série d'aéronefs compris dans le même éclairement et se trouvant à peu près à la même distance (ce que l'on appelle une zone de chevauchement locale). Dans le cas de ces aéronefs, la performance d'acquisition est grandement améliorée par l'emploi d'un verrouillage sélectif limité utilisant II = 0.
- Note 2.— L'acquisition complémentaire consiste à verrouiller l'aéronef acquis en utilisant II = 0 puis à procéder à une acquisition au moyen d'une interrogation « appel général » mode S seulement avec II = 0. Seuls les aéronefs qui ne sont pas encore acquis et qui ne sont pas encore verrouillés répondront à cette interrogation, facilitant ainsi l'acquisition.
 - 3.1.2.5.2.1.5.1 Verrouillage à l'intérieur d'un éclairement.
- 3.1.2.5.2.1.5.1.1 Lorsqu'un verrouillage avec II = 0 est utilisé en complément de l'acquisition, une commande de verrouillage pour II = 0 peut être émise pour tous les aéronefs inclus dans le même éclairement que les aéronefs que l'on cherche à acquérir, et pas seulement pour ceux qui se trouvent dans la zone de chevauchement.
- Note.— Le verrouillage de tous les aéronefs compris dans l'éclairement réduira la quantité de fruit d'« appel général » généré en réponse aux interrogations « appel général » avec II = 0.
 - 3.1.2.5.2.1.5.2 Durée du verrouillage.
- Les interrogateurs qui procèdent à une acquisition complémentaire en utilisant II = 0 3.1.2.5.2.1.5.2.1 doivent effectuer l'acquisition en transmettant une commande de verrouillage sur un maximum de deux balayages consécutifs à chacun des aéronefs déjà acquis dans l'éclairement qui contient la zone de chevauchement et ne doivent pas la répéter avant que 48 s ne se soient écoulées.
- Note.— En réduisant au minimum le temps de verrouillage, on réduit la probabilité de conflit avec les activités d'acquisition d'un interrogateur voisin utilisant également II = 0 pour une acquisition complémentaire.
 - 3.1.2.5.2.1.5.2.2 [Réservé]
 - 3.1.2.5.2.2 Réponse « appel général », format descendant 11

1	6	9	33
DF	CA	AA	PI
5	8	32	2 56

La réponse aux interrogations « appel général » mode S seulement ou modes A/C/S doit être une réponse « appel général » mode S, format descendant 11. Le format de cette réponse doit comprendre les champs suivants:

> Champ Référence (§)

08/11/2018 Amendement 2

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 39 de 133

Janvier 2016

DF	format descendant	3.1.2.3.2.1.2
CA	possibilités	3.1.2.5.2.2.1
AA	adresse annoncée	3.1.2.5.2.2.2
ΡI	parité/identificateur d'interrogateur	3.1.2.3.2.1.4

3.1.2.5.2.2.1 *CA* — *Possibilités (Capability)*. Ce champ descendant de 3 bits (6-8) véhicule une information sur le niveau du transpondeur ainsi que les informations ci-dessous et doit être utilisé dans les formats DF = 11 et DF = 17.

Codage:

- signifie un transpondeur de niveau 1 (surveillance seulement) et aucun moyen de positionner le code 7 dans CA, en vol ou au sol
- 1 réservé
- 2 réservé
- 3 réservé
- signifie un transpondeur de niveau 2 ou de niveau supérieur et moyen de positionner le code 7 dans CA, au sol
- 5 signifie un transpondeur de niveau 2 ou de niveau supérieur et moyen de positionner le code 7 dans CA, en vol
- signifie un transpondeur de niveau 2 ou de niveau supérieur et moyen de positionner le code 7 dans CA, en vol ou au sol
- signifie que le champ DR n'est pas égal à 0 ou que le champ FS est égal à 2, 3, 4 ou 5, en vol ou au sol

Lorsque les conditions relatives au fonctionnement du code 7 dans CA ne sont pas remplies, les aéronefs munis de transpondeurs de niveau 2 ou de niveau supérieur :

- a) sans moyen automatique d'indiquer la situation au sol, doivent utiliser le code 6;
- b) avec un moyen automatique d'indiquer la situation au sol, doivent utiliser le code 4 lorsqu'ils sont au sol et le code 5 lorsqu'ils sont en vol.

Les installations embarquées capables de positionner le code 4, 5, 6 ou 7 dans le champ CA doivent fournir des comptes rendus de capacités de liaison de données (§ 3.1.2.6.10.2.2).

Note.— Les codes 1 à 3 sont réservés pour assurer la compatibilité ascendante.

- 3.1.2.5.2.2.2 AA Adresse annoncée. Ce champ descendant de 24 bits (9-32) doit contenir l'adresse d'aéronef qui assure une identification sans ambiguïté de l'aéronef.
- 3.1.2.5.3 Protocole de verrouillage. Lorsqu'un interrogateur a obtenu l'adresse d'un aéronef déterminé, il doit utiliser pour cet aéronef le protocole de verrouillage « appel général » défini au § 3.1.2.6.9 à condition que :
 - l'interrogateur utilise un code IC différent de 0 ; et
 - l'aéronef soit situé dans une zone où l'interrogateur est autorisé à utiliser le verrouillage.

Note 1.— A la suite de l'acquisition, le transpondeur reçoit des interrogations à adresse discrète selon les dispositions des § 3.1.2.6, 3.1.2.7 et 3.1.2.8, et le protocole de verrouillage « appel général » sert à inhiber les réponses aux autres interrogations « appel général ».

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 40 de 133 1 Janvier 2016

Note 2.— Les organismes régionaux d'attribution de codes IC peuvent définir les règles qui limitent l'utilisation de l'interrogation sélective et du protocole de verrouillage (p. ex. aucun verrouillage dans une zone limitée déterminée, utilisation du verrouillage intermittent dans des zones définies et aucun verrouillage d'aéronefs qui ne sont pas encore équipés pour utiliser le code SI).

3.1.2.5.4 Protocole « appel général » stochastique. Lorsqu'il a accepté un appel général mode S seulement avec PR égal à 1 à 4 ou 9 à 12, le transpondeur doit exécuter un processus aléatoire. La décision de répondre doit être prise conformément à la probabilité spécifiée dans l'interrogation. Le transpondeur ne doit pas répondre s'il reçoit un code PR égal à 5, 6, 7, 13, 14 ou 15 (§ 3.1.2.5.2.1.1).

Note.— Le caractère aléatoire des réponses permet à l'interrogateur de distinguer des aéronefs très proches les uns des autres, pour lesquels il y aurait autrement chevauchement synchrone des réponses.

3.1.2.6 TRANSACTIONS ADRESSEES DE SURVEILLANCE ET DE COMMUNICATION DE LONGUEUR STANDARD

Note 1.— Les interrogations décrites dans le présent paragraphe sont adressées à des aéronefs déterminés. Il y a deux types fondamentaux d'interrogations et de réponses : les interrogations et réponses courtes et les interrogations et réponses longues. Les interrogations et réponses courtes correspondent aux formats UF 4 et 5 et DF 4 et 5, tandis que les interrogations et réponses longues correspondent aux formats UF 20 et 21 et DF 20 et 21.

Note 2.— Les protocoles de communication figurent au § 3.1.2.6.11. Ces protocoles définissent la commande de l'échange de données.

Note 3.— Les codes utilisés dans les champs et sous-champs mission dits « réservés à l'ACAS », dans ce § 3.1.2, sont spécifiés dans le Chapitre 4, paragraphe 4.3.8.4.1.

3.1.2.6.1 SURVEILLANCE, DEMANDE D'ALTITUDE, FORMAT MONTANT 4

	1	6	9		14	17	33
	UF	PC		RR	DI	SD	AP
,	5	5	8	13	16	32	2 56

Le format de cette interrogation doit comprendre les champs suivants :

Chai	тр	Référence (§)
UF	format montant	3.1.2.3.2.1.1
PC	protocole	3.1.2.6.1.1
RR	demande de réponse	3.1.2.6.1.2
DI	identification d'indicatif	3.1.2.6.1.3
SD	indicatif spécial	3.1.2.6.1.4
AP	adresse/parité	3.1.2.3.2.1.3

3.1.2.6.1.1 *PC* — *Protocole*. Ce champ de message montant de 3 bits (6-8) contient les commandes opérationnelles destinées au transpondeur. Il ne doit pas être tenu compte des valeurs 2 à 7 du champ PC et les valeurs 0 et 1 doivent être traitées pour les interrogations de surveillance ou Comm-A contenant DI = 3 (§ 3.1.2.6.1.4.1).

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 41 de 133

Janvier 2016

Codage:

0	signifie action néant
1	signifie verrouillage « appel général » non sélectif (§ 3.1.2.6.9.2)
2	non assigné
3	non assigné
4	signifie clôture Comm-B (§ 3.1.2.6.11.3.2.3)
5	signifie clôture ELM montant (§ 3.1.2.7.4.2.8)
6	signifie clôture ELM descendant (§ 3.1.2.7.7.3)
7	non assigné

3.1.2.6.1.2 *RR* — *Demande de réponse (Reply request)*. Ce champ de message montant de 5 bits (9-13) détermine la longueur et la teneur de la réponse demandée.

Les quatre derniers bits du code RR à 5 bits, convertis en équivalent décimal, constituent le code BDS1 (§ 3.1.2.6.11.2 ou 3.1.2.6.11.3) du message Comm-B demandé si le bit de poids fort du code RR est 1 (RR égal ou supérieur à 16).

Codage:

RR	= 0-15 sert à demander une réponse avec format de surveillance (DF = 4 ou 5);
RR	= 16-31 sert à demander une réponse avec format Comm-B (DF = 20 ou 21) ;
RR	= 16 sert à demander la transmission d'un message Comm-B déclenché à bord conformément au § 3.1.2.6.11.3 ou à demander l'extraction d'un message diffusé Comm-B conformément au § 3.1.2.6.11.4 ;
RR	= 17 sert à demander un compte rendu de possibilités de liaison de données conformément au § 3.1.2.6.10.2.2 ;
RR	= 18 sert à demander l'identification d'aéronef conformément au § 3.1.2.9 ;
19-31	ne sont pas assignés dans le § 3.1.

Note.— Les codes 19 à 31 sont réservés pour d'autres applications, par exemple les communications sur liaison de données, les systèmes anticollision embarqués (ACAS), etc.

3.1.2.6.1.3 DI — Identification d'indicatif (Designator identification). Ce champ de message montant de 3 bits (14-16) sert à identifier la structure du champ SD (§ 3.1.2.6.1.4).

Codage:

- signifie SD non assigné sauf pour l'IIS, les bits 21-27 et 29-32 ne sont pas assignés et le bit 28 contient l'OVC [commande de recouvrement 3.1.2.6.1.4.1, alinéa i)]
- 1 signifie SD contient des informations multisites et de commande de communication
- 2 signifie SD contient des données de commande de squitter long

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 42 de 133 1 Janvier 2016

- signifie SD contient des informations de verrouillage multisite SI, de diffusion et de commande de GICB et le bit 28 contient l'OVC [commande de recouvrement 3.1.2.6.1.4.1, alinéa i)]
- 4-6 signifie SD non assigné
- signifie SD contient une demande de lecture de données supplémentaires et des informations multisites et de commande de communication et le bit 28 contient l'OVC [commande de recouvrement 3.1.2.6.1.4.1, alinéa i)].
- 3.1.2.6.1.4 SD Indicatif spécial (Special designator). Ce champ de message montant de 16 bits (17-32) contient les codes de commande qui dépendent du codage du champ DI.

Note.— Le champ indicatif spécial (SD) sert à transférer au transpondeur les informations multisites, de verrouillage et de commande de communication en provenance de la station sol.

DΙ				STR	UCTURE	SD				
	17		21			28	29			
0		IIS		Réservé		0/	/C	Réservé		
		20)			27	28		32	
	17		21 2	3	26 2	27	29			
1		IIS	MBS	MES	LOS	RSS		TMS		
		20	22		25 26		28		32	
	17		21	24	2	27	29			
2		Réservé	TCS	R	CS	SAS		Réservé		
		20	1	23	26		28		32	
	17		2	3 24		28	29			
3		SIS	L	SS	RRS	0/	VC	Réservé		
			22	23		27	28		32	
	17		21	25	26	27	28	29		
7		IIS	RRS	S Ré	éservé LO	S Réser	vé OVC	TMS	3	
		20		24	25 2	26	27 28			32

3.1.2.6.1.4.1 Sous-champs de SD. Le champ SD contient l'information suivante :

- a) Si DI = 0, 1 ou 7 : IIS, sous-champ identificateur d'interrogateur de 4 bits (17-20), contient un code d'identificateur assigné de l'interrogateur (§ 3.1.2.5.2.1.2.3).
- b) Si DI = 0 : les bits 21-27 et 29-32 ne sont pas assignés.
- c) Si DI = 1:

MBS, sous-champ Comm-B multisite de 2 bits (21, 22), comporte les codes suivants :

- 0 signifie action Comm-B néant
- 1 signifie demande de réservation Comm-B déclenché à bord (§ 3.1.2.6.11.3.1)
- 2 signifie clôture Comm-B (§ 3.1.2.6.11.3.2.3)
- 3 non assigné.

MES, sous-champ ELM multisite de 3 bits (23-25), contient les commandes de réservation et de clôture des messages ELM, comme suit :

- 0 signifie action ELM néant
- 1 signifie demande de réservation ELM montant (§ 3.1.2.7.4.1)

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 43 de 133 1 Janvier 2016

- 2 signifie clôture ELM montant (§ 3.1.2.7.4.2.8)
- 3 signifie demande de réservation ELM descendant (§ 3.1.2.7.7.1.1)
- 4 signifie clôture ELM descendant (§ 3.1.2.7.7.3)
- 5 signifie demande de réservation ELM montant et clôture ELM descendant
- 6 signifie clôture ELM montant et demande de réservation ELM descendant
- signifie clôture ELM montant et ELM descendant.

RSS, sous-champ statut de réservation de 2 bits (27, 28), demande au transpondeur d'indiquer son statut de réservation dans le champ UM. Les codes ci-dessous ont été attribués :

- 0 signifie demande néant
- 1 signifie indiquer statut de réservation Comm-B dans UM
- 2 signifie indiquer statut de réservation ELM montant dans UM
- 3 signifie indiquer statut de réservation ELM descendant dans UM.

d) Si DI = 1 ou 7:

LOS, sous-champ verrouillage de 1 bit (26), s'il est positionné à 1, signifie commande de verrouillage multisite émanant de l'interrogateur indiqué dans le sous-champ IIS. Il doit être positionné à 0 pour indiquer qu'il n'y a pas de commande de changement du verrouillage.

TMS, sous-champ message tactique de 4 bits (29-32), contient l'information de commande de communication utilisée par l'avionique de liaison de données.

e) Si DI = 7:

RRS, sous-champ demande de réponse de 4 bits (21-24) du champ SD, donne le code BDS2 de la réponse Comm-B demandée.

Les bits 25 et 27 ne sont pas assignés.

f) Si DI = 2:

TCS, sous-champ commande de type de 3 bits (21-23) du champ SD, commande les formats de type en vol et de type surface du squitter long communiquées par le transpondeur et sa réponse aux interrogations modes A/C, « appel général » modes A/C/S et « appel général » mode S seulement. Les codes sont les suivants :

- 0 signifie commande de formats de surface ou d'inhibition de réponse néant
- signifie formats de surface pendant les 15 prochaines secondes (voir § 3.1.2.6.1.4.2)
- 2 signifie formats de surface pendant les 60 prochaines secondes (voir § 3.1.2.6.1.4.2)
- 3 signifie annuler les commandes de formats de surface et d'inhibition de réponse
- 4-7 réservés.

Le transpondeur doit être capable d'accepter une nouvelle commande même si le délai de temporisation d'une commande précédente n'est pas encore expiré.

RCS, sous-champ commande de cadence de 3 bits (24-26) du champ SD, commande la cadence des squitters du transpondeur lorsqu'il émet les formats de type surface du squitter long. Ce sous-champ ne doit pas avoir d'effet sur la cadence des squitters du transpondeur lorsqu'il émet les formats de type en vol du squitter long. Les codes sont les suivants :

- 0 signifie commande de cadence des squitters longs de surface néant
- 1 signifie utiliser la cadence élevée de squitters longs de surface pendant 60 secondes

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 44 de 133 1 Janvier 2016

- 2 signifie utiliser la cadence faible de squitters longs de surface pendant 60 secondes
- 3-7 réservés.

Note 1.— Les cadences élevée et faible d'émission des squitters longs sont indiquées au § 3.1.2.8.6.4 et s'appliquent aux messages de position à la surface, d'identification et de classe d'aéronef et d'état opérationnel.

Note 2.— Comme il est indiqué au § 3.1.2.8.5.2, alinéa d), les squitters d'acquisition sont émis lorsque les squitters longs de type surface ne sont pas transmis.

SAS, sous-champ antenne de surface de 2 bits (27-28) du champ SD, commande la sélection de l'antenne diversité de transpondeur utilisée 1) pour les squitters longs lorsque le transpondeur émet les formats de type de surface, et 2) pour les squitters d'acquisition lorsque le transpondeur indique la situation « à la surface ». Ce sous-champ ne doit pas avoir d'effet sur le choix de l'antenne diversité lorsque le transpondeur indique la situation « en vol ». Les codes sont les suivants :

- 0 signifie commande d'antenne néant
- signifie alterner entre l'antenne supérieure et l'antenne inférieure pendant 120 secondes
- 2 signifie utiliser l'antenne inférieure pendant 120 secondes
- 3 signifie retourner à l'antenne par défaut.

Note.— L'antenne par défaut est l'antenne supérieure (§ 3.1.2.8.6.5).

g) Si DI = 3:

SIS, sous-champ identificateur de surveillance de 6 bits (17-22) du champ SD, contient un code d'identificateur de surveillance affecté à l'interrogateur (§ 3.1.2.5.2.1.2.4).

LSS, sous-champ surveillance de verrouillage de 1 bit (23), s'il est positionné à 1, signifie une commande de verrouillage multisite émanant de l'interrogateur indiqué dans le sous-champ SIS. S'il est positionné à 0, LSS signifie qu'aucun changement de l'état de verrouillage n'est commandé.

RRS, sous-champ demande de réponse de 4 bits (24-27) du champ SD, contient le code BDS2 du registre GICB demandé.

Les bits 29 à 32 ne sont pas assignés.

- h) Si DI = 4, 5 ou 6, le champ SD n'a aucune signification et ne doit avoir aucune incidence sur d'autres protocoles du cycle de transaction. Ces codes DI sont réservés jusqu'à une future assignation du champ SD.
- i) Si DI = 0, 3 ou 7:

Outre les éléments spécifiés plus haut, le « SD » contient les éléments suivants :

OVC, sous-champ commande de recouvrement de 1 bit (bit 28) du champ SD, est utilisé par l'interrogateur pour commander de superposer la parité des données (DP, § 3.1.2.3.2.1.5) sur la réponse à l'interrogation, conformément au § 3.1.2.6.11.2.5.

- 3.1.2.6.1.4.2 Sous-champ TCS = 1 dans le champ SD des squitters longs. Lorsqu'il est égal à 1, le sous-champ TCS du champ SD a la signification suivante :
 - a) diffusion des formats de surface du squitter long, notamment le message de position à la surface (§ 3.1.2.8.6.4.3), le message d'identification et de classe (§ 3.1.2.8.6.4.4), le message d'état opérationnel de l'aéronef (§ 3.1.2.8.6.4.6) et le message d'état de l'aéronef (§ 3.1.2.8.6.4.6), pendant les 15 prochaines secondes aux cadences appropriées sur l'antenne dorsale pour les systèmes à

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 45 de 133

Janvier 2016

diversité d'antennes, à moins que le sous-champ SAS ne le spécifie autrement (§ 3.1.2.6.1.4.1, alinéa f);

- b) inhibition des réponses aux interrogations modes A/C, « appel général » modes A/C/S et « appel général » mode S seulement pendant les 15 prochaines secondes ;
- c) diffusion des squitters d'acquisition conformément au § 3.1.2.8.5 en utilisant l'antenne spécifiée au § 3.1.2.8.5.3, alinéa a) ;
- d) n'a aucune incidence sur la situation « en vol »/« à la surface » communiquée par les champs CA, FS et VS ;
- e) arrêt de la diffusion des formats de message de type en vol du squitter long ;
- f) diffusion des formats de surface du squitter long aux cadences spécifiées dans le sous-champ TRS à moins qu'il n'y ait une commande d'émettre aux cadences spécifiées dans le sous-champ RCS.
- 3.1.2.6.1.4.3 Sous-champ TCS = 2 dans le champ SD des squitters longs. Lorsqu'il est égal à 2 dans le champ SD, le sous-champ TCS a la signification suivante :
 - a) diffusion des formats de surface du squitter long, notamment le message de position à la surface (§ 3.1.2.8.6.4.3), le message d'identification et de classe (§ 3.1.2.8.6.4.4), le message d'état opérationnel de l'aéronef (§ 3.1.2.8.6.4.6) et le message d'état de l'aéronef (§ 3.1.2.8.6.4.6) pendant les 60 prochaines secondes aux cadences appropriées sur l'antenne dorsale pour les systèmes à diversité d'antennes, à moins que le sous-champ SAS ne le spécifie autrement (§ 3.1.2.6.1.4.1, alinéa f);
 - b) inhibition des réponses aux interrogations modes A/C, « appel général » modes A/C/S et « appel général » mode S seulement pendant les 60 prochaines secondes ;
 - c) diffusion des squitters d'acquisition conformément au § 3.1.2.8.5 en utilisant l'antenne spécifiée au § 3.1.2.8.5.3, alinéa a) ; d) n'a aucune incidence sur la situation « en vol »/« à la surface » communiquée par les champs CA, FS et VS ;
 - d) n'a aucune incidence sur la situation « en vol »/« à la surface » communiquée par les champs CA, FS et VS ;
 - e) arrêt de la diffusion des formats de message de type en vol du squitter long;
 - f) diffusion des formats de surface du squitter long aux cadences spécifiées dans le sous-champ TRS à moins qu'il n'y ait une commande d'émettre aux cadences spécifiées dans le sous-champ RCS.
- 3.1.2.6.1.5 *Traitement des champs PC et SD*. Lorsque DI = 1, le champ PC doit être entièrement traité avant le champ SD.

3.1.2.6.2 COMM-A, DEMANDE D'ALTITUDE, FORMAT MONTANT 20

1		6	9	14	4	17	33	89
	UF	PC	RF	₹	DI	SD	MA	AP
	5		8	13	16	32	. 88	112

Le format de cette interrogation doit comprendre les champs suivants :

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition :

Date

Page 46 de 133

Janvier 2016

Champ	Référence (§)
UF format montant PC protocole RR demande de réponse DI identification d'indicatif SD indicatif spécial MA message Comm-A	3.1.2.3.2.1.1 3.1.2.6.1.1 3.1.2.6.1.2 3.1.2.6.1.3 3.1.2.6.1.4 3.1.2.6.2.1
AP adresse/parité	3.1.2.3.2.1.3

3.1.2.6.2.1 *MA* — *Message Comm-A*. Ce champ de 56 bits (33-88) contient un message sur liaison de données destiné à l'aéronef.

3.1.2.6.3 SURVEILLANCE, DEMANDE D'IDENTITE, FORMAT MONTANT 5

1		6	Ç	9	14	17	33
	UF	PO		RR	DI	SD	AP
	5	,	8	13	16	32	56

Le format de cette interrogation doit comprendre les champs suivants :

Champ	Référence (§)
UF format montant	3.1.2.3.2.1.1
PC protocole	3.1.2.6.1.1
RR demande de réponse	3.1.2.6.1.2
DI identification d'indicatif	3.1.2.6.1.3
SD indicatif spécial	3.1.2.6.1.4
AP adresse/parité	3.1.2.3.2.1.3

3.1.2.6.4 COMM-A, DEMANDE D'IDENTITE, FORMAT MONTANT 21

1	6	9		14	17	33	89
UF	PC		RR	DI	SD	MA	AP
Ę	5	8	13	16	32	88	112

Le format de cette interrogation doit comprendre les champs suivants :

Champ	Référence (§)
UF format montant	3.1.2.3.2.1.1
PC protocole	3.1.2.6.1.1
RR demande de réponse	3.1.2.6.1.2
DI identification d'indicatif	3.1.2.6.1.3
SD indicatif spécial	3.1.2.6.1.4
MA message Comm-A	3.1.2.6.2.1
AP adresse/parité	3.1.2.3.2.1.3

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 47 de 133

Janvier 2016

3.1.2.6.5 REPONSE SURVEILLANCE- ALTITUDE, FORMAT DESCENDANT 4

•	1	6	!	9	14	17	33
	DF		FS	DR	UM	AC	AP
	į	5	8	1;	3 16	32	2 56

Cette réponse doit être transmise comme suite à une interrogation UF 4 ou 20 avec une valeur du champ RR inférieure à 16. Son format doit comprendre les champs suivants :

Champ	Référence (§)
DF format descendant	3.1.2.3.2.1.2
FS statut du vol	3.1.2.6.5.1
DR demande descendante	3.1.2.6.5.2
UM message utilitaire	3.1.2.6.5.3
AC code d'altitude	3.1.2.6.5.4
AP adresse/parité	3.1.2.3.2.1.3

- 3.1.2.6.5.1 FS Statut du vol (Flight status). Ce champ de message descendant de 3 bits (6-8) comprend l'information suivante :
 - 0 signifie ni alerte ni SPI, aéronef en vol
 - 1 signifie ni alerte ni SPI, aéronef au sol
 - 2 signifie alerte, sans SPI, aéronef en vol
 - 3 signifie alerte, sans SPI, aéronef au sol
 - 4 signifie alerte et SPI, aéronef en vol ou au sol
 - 5 signifie SPI, sans alerte, aéronef en vol ou au sol
 - 6 réservé
 - 7 non assigné.

Note.— Les conditions qui entraînent une alerte sont indiquées au § 3.1.2.6.10.1.1.

3.1.2.6.5.2 *DR* — *Demande descendante (Downlink request)*. Ce champ de message descendant de 5 bits (9-13) contient des demandes de transmission d'information sur liaison descendante.

Codage:

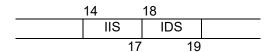
- 0 signifie demande descendante néant
- 1 signifie demande de message Comm-B
- 2 réservé à l'ACAS
- 3 réservé à l'ACAS
- 4 signifie message diffusé Comm-B 1 disponible
- 5 signifie message diffusé Comm-B 2 disponible
- 6 réservé à l'ACAS
- 7 réservé à l'ACAS
- 8-15 non attribués
- 16-31 voir protocole ELM descendant (§ 3.1.2.7.7.1)

Les codes 1-15 doivent avoir priorité sur les codes 16-31.

Note.— Du fait que les codes 1 à 15 ont priorité, l'annonce d'un message Comm-B peut interrompre l'annonce d'un ELM descendant. L'annonce du message le plus court a donc priorité.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision


Chapitre 3 Edition : Date Page 48 de 133

Janvier 2016

3.1.2.6.5.3 *UM* — *Message utilitaire (Utility message)*. Ce champ descendant de 6 bits (14-19) contient l'information sur le statut des communications du transpondeur, comme le spécifient les § 3.1.2.6.1.4.1 et 3.1.2.6.5.3.1.

3.1.2.6.5.3.1 Sous-champs de UM pour protocoles multisites

STRUCTURE DU CHAMP UM

Les sous-champs ci-dessous doivent être insérés par le transpondeur dans le champ UM de la réponse si une interrogation de surveillance ou Comm-A (UF = 4, 5, 20, 21) contient DI = 1 et RSS différent de 0 :

IIS : sous-champ identificateur d'interrogateur de 4 bits (14-17), indique l'identificateur qui est réservé pour les communications multisites.

IDS : sous-champ indicatif d'identificateur de 2 bits (18, 19), indique le type de réservation effectué par l'interrogateur identifié dans le sous-champ IIS.

Codage

- 0 signifie information néant
- 1 signifie IIS contient le code II Comm-B
- 2 signifie IIS contient le code II Comm-C
- 3 signifie IIS contient le code II Comm-D
- 3.1.2.6.5.3.2 Statut de réservation multisite. Si la teneur du champ UM n'est pas spécifiée par l'interrogation (lorsque DI = 0 ou 7 ; ou lorsque DI = 1 et RSS = 0), l'identificateur d'interrogateur de la station sol qui est alors réservée pour la remise du message Comm-B multisite (§ 3.1.2.6.11.3.1) doit être transmis dans le sous-champ IIS, en même temps que le code 1 du sous-champ IDS.

Si la teneur du champ UM n'est pas spécifiée par l'interrogation et s'il n'y a pas de réservation Comm-B en vigueur, l'identificateur d'interrogateur de la station sol qui est alors réservée pour la remise des ELM descendants (§ 3.1.2.7.6.1), le cas échéant, doit être transmis dans le sous-champ IIS, en même temps que le code 3 du sous-champ IDS.

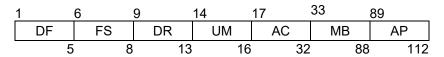
- 3.1.2.6.5.4 AC Code d'altitude (Altitude code). Ce champ de 13 bits (20-32) contient les données d'altitude codées comme suit :
 - a) Le bit 26 est dénommé bit M. Ce bit doit être 0 si l'altitude est donnée en pieds. M doit être égale 1 pour signaler que l'altitude est indiquée en unités métriques.
 - b) Si M égale 0, le bit 28 est dénommé bit Q. Q doit être égale 0 pour indiquer que l'altitude est communiquée par tranches de 100 ft. Q doit être égale 1 pour indiquer que l'altitude est communiquée par tranches de 25 ft.
 - c) Si le bit M (bit 26) et le bit Q (bit 28) sont égaux à 0, l'altitude doit être codée de la manière prévue au § 3.1.1.7.12.2.3 pour les réponses mode C. En commençant par le bit 20, la séquence doit être C1, A1, C2, A2, C4, A4, 0, B1, 0, B2, D2, B4, D4.
 - d) Si le bit M égale 0 et si le bit Q égale 1, le champ de 11 bits constitué des bits 20 à 25, 27 et 29 à 32 représente un champ codé en binaire avec un bit de poids faible (LSB) de 25 ft. La valeur binaire du nombre entier décimal « N » positif doit être codée en vue de la communication des altitudes-pression

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 49 de 133


Janvier 2016

dans la plage [(25 N — 1 000) ± 12,5 ft]. Le codage du § 3.1.2.6.5.4, alinéa c), doit servir à communiquer l'altitude-pression au-dessus de 50 187,5 ft.

Note 1.— Cette méthode de codage ne peut servir qu'à indiquer des valeurs comprises entre –1 000 ft et +50 175 ft.

Note 2.— Le bit de poids fort (MSB) de ce champ est le bit 20, comme le prescrit le § 3.1.2.3.1.3.

- e) Si le bit M égale 1, le champ de 12 bits représenté par les bits 20 à 25 et 27 à 31 doit être réservé pour servir au codage de l'altitude en unités métriques.
- f) 0 sera transmis pour chacun des 13 bits du champ AC si les données d'altitude ne sont pas disponibles ou si l'altitude a été jugée invalide.
- 3.1.2.6.6 COMM-B, REPONSE ALTITUDE, FORMAT DESCENDANT 20

Cette réponse doit être produite comme suite à une interrogation UF 4 ou 20 avec valeur du champ RR supérieure à 15. Le format de cette réponse doit comprendre les champs suivants :

Cnamp	Reference (§
DF format descendant	3.1.2.3.2.1.2
FS statut du vol	3.1.2.6.5.1
DR demande descendante	3.1.2.6.5.2
UM message utilitaire	3.1.2.6.5.3
AC code d'altitude	3.1.2.6.5.4
MB message Comm-B	3.1.2.6.6.1
AP adresse/parité	3.1.2.3.2.1.3

3.1.2.6.6.1 *MB* — *Message Comm-B*. Ce champ de message descendant de 56 bits (33-88) sert à transmettre les messages sur liaison de données destinés au sol.

3.1.2.6.7 REPONSE SURVEILLANCE-IDENTITE, FORMAT DESCENDANT 5

	1	6		9		14	20		33	
	DF		FS		DR	UM		ID	AP	
,		5	8	;	13	1	19	32	2	56

Cette réponse doit être produite comme suite à une interrogation UF 5 ou 21 avec valeur de champ RR inférieure à 16. Son format doit comprendre les champs suivants :

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition :

Date

Page 50 de 133

Janvier 2016

Champ	Référence (§)		
DF format descendant	3.1.2.3.2.1.2		
FS statut du vol	3.1.2.6.5.1		
DR demande descendante	3.1.2.6.5.2		
UM message utilitaire	3.1.2.6.5.3		
ID identité	3.1.2.6.7.1		
AP adresse/parité	3.1.2.3.2.1.3		

3.1.2.6.7.1 *ID* — *Identité* (code mode A). Ce champ de 13 bits (20-32) doit contenir le code d'identité d'aéronef, selon les indications du § 3.1.1.6 en ce qui concerne les réponses mode A. En commençant par le bit 20, la séquence est C1, A1, C2, A2, C4, A4, 0, B1, D1, B2, D2, B4, D4.

3.1.2.6.8 COMM-B, REPONSE IDENTITE, FORMAT DESCENDANT 21

1		6	9		14	20	33	89
	DF	FS		DR	UM	ID	MB	AP
	5)	8	13	19	32	2 88	112

Cette réponse doit être produite comme suite à une interrogation UF 5 ou 21 avec valeur de champ RR supérieure à 15. Le format de cette réponse doit comprendre les champs suivants :

Champ	Référence (§)		
DF format descendant	3.1.2.3.2.1.2		
FS statut du vol	3.1.2.6.5.1		
DR demande descendante	3.1.2.6.5.2		
UM message utilitaire	3.1.2.6.5.3		
ID identité	3.1.2.6.7.1		
MB message Comm-B	3.1.2.6.6.1		
AP adresse/parité	3.1.2.3.2.1.3		

3.1.2.6.9 PROTOCOLES DE VERROUILLAGE

Note.— Le verrouillage « appel général » non sélectif et le verrouillage multisite ne s'excluent pas mutuellement. Les interrogateurs qui emploient les protocoles de verrouillage multisite pour la coordination du réseautage des interrogateurs peuvent utiliser des commandes de verrouillage non sélectif dans la même interrogation. Par exemple, le verrouillage non sélectif peut être employé pour empêcher des réponses avec DF = 11 par les transpondeurs Mode S suite à l'interprétation erronée d'interrogations « appel général » modes A/C seulement comme des interrogations « appel général » modes A/C/S. Ce problème survient lorsqu'une impulsion P_4 étroite est incorrectement interprétée comme une impulsion P_4 large.

3.1.2.6.9.1 Verrouillage « appel général » multisite

Note.— Le protocole de verrouillage multisite empêche que l'accès à un transpondeur ne soit refusé à une station sol par des commandes de verrouillage provenant d'une station sol adjacente dont la couverture chevauche celle de la première.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 51 de 133 1 Janvier 2016

- Note 1.— Quinze interrogateurs peuvent émettre des commandes de verrouillage II multisite indépendantes. En outre, 63 interrogateurs peuvent émettre des commandes de verrouillage SI indépendantes. Le temps correspondant à chacune de ces commandes de verrouillage doit être fixé séparément.
- Note 2.— Le verrouillage multisite (qui n'utilise que des codes II non égaux à 0) n'influe pas sur la réponse du transpondeur aux interrogations « appel général » mode S seulement contenant II = 0 ni sur les interrogations « appel général » modes A/C/S.
 - 3.1.2.6.9.2 Verrouillage « appel général » non sélectif

un verrouillage « appel général » non sélectif (§ 3.1.2.6.9.2).

Note 1.— Dans les cas où le protocole de verrouillage multisite pour codes II n'est pas nécessaire (p. ex. s'il n'y a pas de chevauchement de couverture ou s'il y a coordination entre stations sol à l'aide de communications sol-sol), on peut utiliser le protocole de verrouillage non sélectif.

Lorsqu'il accepte une interrogation contenant le code 1 dans le champ PC, le transpondeur doit commencer à verrouiller (c.-à-d. à ne pas accepter) deux types d'interrogations « appel général » :

- a) l'appel général mode S seulement (UF = 11), avec II = 0;
- b) l'appel général modes A/C/S du § 3.1.2.1.5.1.1.

Ce verrouillage doit subsister pendant un intervalle de temps T_D (§ 3.1.2.10.3.9) après la dernière réception de la commande de verrouillage. Le verrouillage non sélectif ne doit pas interdire l'acceptation des interrogations « appel général » mode S seulement contenant les codes PR 8 à 12.

- Note 2.— Le verrouillage non sélectif n'influe pas sur la réponse du transpondeur aux interrogations « appel général » mode S seulement contenant II différent de 0.
 - 3.1.2.6.10 PROTOCOLES DE DONNEES DE BASE
- 3.1.2.6.10.1 *Protocole de statut du vol*. Le statut du vol doit être indiqué dans le champ FS (§ 3.1.2.6.5.1).
- 3.1.2.6.10.1.1 Alerte. Un état d'alerte doit être indiqué dans le champ FS si le code d'identité mode A transmis dans les réponses mode A et dans les formats descendants DF = 5 et DF = 21 est modifié par le pilote.
- 3.1.2.6.10.1.1.1 *Etat d'alerte permanent*. L'état d'alerte doit être maintenu si le code d'identité mode A devient 7500, 7600 ou 7700.
- 3.1.2.6.10.1.1.2 Etat d'alerte temporaire. L'état d'alerte doit être temporaire et s'annuler automatiquement au bout de T_C secondes si le code d'identité mode A est modifié pour prendre une valeur autre que celles du § 3.1.2.6.10.1.1.1. Le Tc doit être redéclenché et maintenu pendant Tc secondes après l'acceptation de tout changement par la fonction de transpondeur.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 52 de 133 1 Janvier 2016

Note 1.— Le redéclenchement a pour but de permettre à l'interrogateur sol d'obtenir le code d'identité mode A désiré avant que l'état d'alerte ne soit levé.

- Note 2.— La valeur de T_C est donnée au § 3.1.2.10.3.9.
- 3.1.2.6.10.1.1.3 Fin de l'état d'alerte permanent. L'état d'alerte permanent doit prendre fin pour être remplacé par un état d'alerte temporaire lorsque le code d'identité mode A prend une valeur autre que 7500, 7600 ou 7700.
- 3.1.2.6.10.1.2 *Indication « au sol »*. La situation « à la surface » de l'aéronef doit être indiquée dans le champ CA (§ 3.1.2.5.2.2.1), le champ FS (§ 3.1.2.6.5.1) et le champ VS (§ 3.1.2.8.2.1). Si une indication automatique de la situation « à la surface » (p. ex. microcontact de train d'atterrissage) est disponible à l'interface de données du transpondeur (§ 3.1.2.10.5.1.3), cette indication doit être utilisée comme base pour l'indication de la situation « à la surface », à l'exception de ce qui est prévu au § 3.1.2.6.10.3.1. Dans le cas contraire, les codes FS et VS doivent indiquer que l'aéronef est en vol, et le champ CA doit indiquer que l'aéronef est en vol ou au sol (CA = 6).
- 3.1.2.6.10.1.3 *Impulsion spéciale d'identification de position*. Les transpondeurs mode S doivent transmettre l'équivalent de l'impulsion spéciale d'identification de position (SPI) dans le champ FS et dans le sous-champ état de surveillance (SSS) lorsqu'ils sont actionnés manuellement. Cette impulsion doit être transmise pendant T_I secondes après le déclenchement (§ 3.1.1.6.3, 3.1.1.7.13 et 3.1.2.8.6.3.1.1).
 - Note.— La valeur de T_I est donnée au § 3.1.2.10.3.9.
- 3.1.2.6.10.2 *Protocole de compte rendu de capacité*. La structure et le contenu des registres de compte rendu de capacité de liaison de données doivent être mis en œuvre de façon à assurer l'interopérabilité.
- Note 1.— Les capacités des équipements embarqués sont précisées dans les champs spéciaux définis cidessous.
- Note 2.— Le format des données des registres pour le compte rendu de capacité de liaison de données est spécifié dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI.
- 3.1.2.6.10.2.1 Compte rendu de capacité. Le champ CA (capacité) de 3 bits, contenu dans la réponse « appel général », DF = 11, doit indiquer les capacités de base du transpondeur mode S, qui sont décrites au § 3.1.2.5.2.2.1.
- 3.1.2.6.10.2.2 Compte rendu de capacité de liaison de données. Le compte rendu de capacité de liaison de données doit fournir à l'interrogateur une description des capacités de l'équipement mode S en matière de liaison de données.
- Note.— Le compte rendu de capacité de liaison de données est contenu dans le registre 10₁₆, avec extension possible dans les registres 11₁₆ à 16₁₆ lorsqu'une suite est nécessaire.
- 3.1.2.6.10.2.2.1 Extraction et sous-champs de MB pour le compte rendu de capacité de liaison de données
- 3.1.2.6.10.2.2.1.1 Extraction du compte rendu de capacité de liaison de données contenu dans le registre 10₁₆. Le compte rendu doit être contenu dans un message Comm-B déclenché au sol et transmis en réponse à une interrogation contenant RR = 17 et DI différent de 7 ou DI = 7 et RRS = 0 (§ 3.1.2.6.11.2).
- 3.1.2.6.10.2.2.1.2 Sources de capacité de liaison de données. Les comptes rendus de capacité de liaison de données doivent contenir les possibilités du transpondeur, de l'ADLP et de l'ACAS. En cas de perte d'entrées externes, le transpondeur doit mettre à zéro les bits correspondants dans le compte rendu de liaison de données.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 53 de 133 1 Janvier 2016

- 3.1.2.6.10.2.2.1.3 Le compte rendu de capacité de liaison de données doit contenir des informations sur les possibilités suivantes comme il est spécifié au Tableau 3-6.
- 3.1.2.6.10.2.2.1.4 Le numéro de version de sous-réseau mode S doit contenir des informations qui permettent d'assurer l'interopérabilité avec l'équipement de bord plus ancien.
- 3.1.2.6.10.2.2.1.4.1 Le numéro de version de sous-réseau mode S doit indiquer que toutes les fonctions de sous-réseau mises en œuvre répondent aux exigences du numéro de version indiqué. Il doit être positionné à une valeur différente de zéro si au moins un ETTD ou service spécifique mode S est installé.
- Note.— Le numéro de version n'indique pas que toutes les fonctions possibles de la version indiquée sont mises en œuvre.
- 3.1.2.6.10.2.2.2 Mise à jour du compte rendu de capacité de liaison de données. A des intervalles ne dépassant pas 4 s, le transpondeur doit comparer la capacité de liaison de données du moment (bits 41-88 du compte rendu de capacité de liaison de données) à celle qui a été signalée en dernier lieu et, s'il y a une différence, il doit envoyer un compte rendu révisé de capacité de liaison de données par diffusion Comm-B (§ 3.1.2.6.11.4) avec BDS1 = 1 (33-36) et BDS2 = 0 (37-40). Le transpondeur doit déclencher, générer et annoncer le compte rendu révisé de capacité même si la capacité de liaison de données de l'aéronef diminue ou disparaît. Le transpondeur doit veiller à ce que le code BDS soit positionné pour le compte rendu de capacité de liaison de données dans tous les cas, y compris une perte de l'interface.

Note.— Le positionnement du code BDS par le transpondeur garantit qu'un compte rendu de changement de capacité contiendra le code BDS pour tous les cas de défaillance de la liaison de données (p. ex. perte de l'interface de liaison de données du transpondeur).

Tableau 3-6. Tableau du registre 10₁ ₆						
Sous-champs du registre 10 ₁₆	Bits MB	Bits Comm-B				
Drapeau de suite	9	41				
Capacité de commande de recouvrement	15	47				
Capacité ACAS	16 et 37-40	48 et 69-72				
Numéro de version de sous-réseau mode S	17-23	49-55				
Indicateur de protocole renforcé du transpondeur	24	56				
Capacité de services spécifiques	25	57				
Capacité d'ELM montants	26-28	58-60				
Capacité d'ELM descendants	29-32	61-64				
Capacité d'identification d'aéronef	33	65				
Sous-champ capacité en matière de squitters	34	66				
Capacité en matière d'identificateur de surveillance (SI)	35	67				
Compte rendu de capacité relatif aux GICB d'usage commun	36	68				
État des sous-adresses 0 à 15 de l'ETTD	41-56	73-88				

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 54 de 133 1 Janvier 2016

Si l'information sur la capacité transmise au transpondeur ne permet pas une mise à jour au moins une fois toutes les 4 s, le transpondeur doit mettre à 0 les bits 41 à 56 du compte rendu de capacité de liaison de données (registre 10₁₆ du transpondeur).

- Note.— Les bits 1 à 8 contiennent les codes BDS1 et BDS2. Les bits 16 et 37 à 40 contiennent les renseignements sur les possibilités ACAS. Le bit 33 indique la disponibilité des données d'identification de l'aéronef et est positionné par le transpondeur lorsque les données proviennent d'une interface distincte et non de l'ADLP. Le bit 35 est l'indication du code SI. Tous ces bits sont insérés par le transpondeur.
- 3.1.2.6.10.2.3 Compte rendu de capacité relatif aux GICB d'usage commun. Les services GICB d'usage commun qui sont mis à jour de façon active doivent être indiqués dans le registre 17₁₆ du transpondeur.
- 3.1.2.6.10.2.4 Compte rendu de capacité relatif aux GICB des services spécifiques mode S. Les services GICB qui sont installés doivent être indiqués dans les registres 18₁₆ à 1C₁₆.
- 3.1.2.6.10.2.5 Compte rendu de capacité relatif aux MSP des services spécifiques mode S. Les services MSP qui sont installés doivent être indiqués dans les registres 1D₁₆ à 1F₁₆.
 - 3.1.2.6.10.3 Validation de la situation « à la surface » indiquée par un moyen automatique
- Note.— Dans le cas des aéronefs dotés d'un moyen automatique de détection de la situation dans le plan vertical, le champ CA indique si l'aéronef est en vol ou au sol. L'ACAS II acquiert les aéronefs au moyen de squitters courts ou longs, les deux types contenant le champ CA. Si un aéronef indique être au sol, il ne sera pas interrogé par l'ACAS II, afin de réduire l'activité d'interrogation inutile. Si l'aéronef est équipé pour transmettre des messages sur squitter long, la fonction de mise en forme de ces messages dispose peut-être de renseignements permettant de déterminer qu'un aéronef signalant être au sol est en réalité en vol.
- 3.1.2.6.10.3.1 Les aéronefs dotés d'un moyen automatique de détection de la situation « à la surface », dont les transpondeurs ont accès à au moins un des paramètres vitesse sol, altitude radio ou vitesse anémométrique, doivent exécuter l'essai de validation suivant :

Si la situation « en vol »/« à la surface » déterminée automatiquement n'est pas disponible ou si la situation « en vol » est indiquée, la validation ne doit pas être exécutée. Si la situation « en vol »/« à la surface » déterminée automatiquement est disponible et que la situation « à la surface » est indiquée, l'indication « en vol »/« à la surface » doit être annulée et remplacée par l'indication « en vol » si :

Vitesse sol > 100 kt OU vitesse anémométrique > 100 kt OU altitude radio > 50 ft

3.1.2.6.11 PROTOCOLES DE COMMUNICATION DE LONGUEUR STANDARD

- Note 1.— Les deux types de protocoles de communication de longueur standard sont Comm-A et Comm-B; les messages qui utilisent ces protocoles sont transmis sous le contrôle de l'interrogateur. Les messages Comm-A sont envoyés directement au transpondeur et sont terminés en une seule transaction. Les messages Comm-B servent à transmettre l'information dans le sens air-sol et peuvent être déclenchés par l'interrogateur ou par le transpondeur. En cas de transfert de messages Comm-B déclenché au sol, l'interrogateur demande une lecture des données du transpondeur, et celui-ci envoie le message en une seule et même transaction. En cas de transfert de messages Comm-B déclenché à bord, le transpondeur annonce son intention de transmettre un message; dans une transaction suivante, l'interrogateur extrait ce message.
- Note 2.— Dans un protocole Comm-B non sélectif déclenché à bord, toutes les transactions nécessaires peuvent être commandées par n'importe quel interrogateur.
- Note 3.— Dans certains cas de chevauchement de la couverture de plusieurs interrogateurs, il n'y a pas toujours de moyen de coordonner le fonctionnement des interrogateurs par communications au sol. Les protocoles de communication Comm-B déclenchés à bord nécessitent plus d'une transaction. Les dispositions sont prises pour veiller à ce que la clôture d'un message Comm-B ne soit effectuée que par l'interrogateur qui a

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 55 de 133 1 Janvier 2016

effectivement transféré le message. Cela peut être obtenu par l'utilisation des protocoles de communication Comm-B multisites ou par l'utilisation des protocoles de communication Comm-B renforcés.

- Note 4.— Le protocole multisite et le protocole de communication non sélectif ne peuvent pas être utilisés simultanément en cas de chevauchement de la couverture de plusieurs interrogateurs, à moins que ceux-ci ne coordonnent leurs activités de communication à l'aide de communications au sol.
- Note 5.— Le protocole de communication multisite est indépendant du protocole de verrouillage multisite, c'est-à-dire que le protocole de communication multisite peut être utilisé avec le protocole de verrouillage non sélectif et vice versa. Le choix des protocoles de verrouillage et de communication à utiliser dépend de la technique de gestion de réseau utilisée.
- Note 6.— Le protocole de message diffusé Comm-B peut servir à communiquer un message à tous les interrogateurs actifs.
- 3.1.2.6.11.1 *Comm-A*. L'interrogateur doit remettre un message Comm-A dans le champ MA d'une interrogation UF = 20 ou 21.
- 3.1.2.6.11.1.1 Accusé de réception technique Comm-A. Le transpondeur doit envoyer automatiquement un accusé de réception technique d'une interrogation Comm-A en transmettant la réponse demandée (§ 3.1.2.10.5.2.2.1).
- Note.— La réception d'une réponse du transpondeur, conforme aux dispositions du § 3.1.2.4.1.2.3, alinéa d), et du § 3.1.2.4.1.3.2.2.2, constitue l'accusé de réception adressé par ce transpondeur à l'interrogateur pour lui indiquer qu'il a accepté l'interrogation. En cas de défaillance de la liaison montante ou de la liaison descendante, cette réponse manquera et l'interrogateur enverra normalement le message une nouvelle fois. En cas de défaillance de la liaison descendante, il se peut que le transpondeur reçoive le message plus d'une fois.
- 3.1.2.6.11.1.2 *Message diffusé Comm-A*. Si une interrogation diffusée Comm-A est acceptée (§ 3.1.2.4.1.2.3.1.3), le transfert de l'information doit être effectué conformément au § 3.1.2.10.5.2.1.1, mais les autres fonctions des transpondeurs ne doivent pas être affectées et aucune réponse ne doit être transmise.
 - Note 1.— Il n'y a pas d'accusé de réception technique des messages diffusés Comm-A.
- Note 2.— Etant donné que le transpondeur ne traite pas les champs de contrôle des interrogations diffusées Comm-A, les 27 bits qui suivent le champ UF sont également disponibles pour contenir des données utilisateur.
 - 3.1.2.6.11.2 Comm-B déclenché au sol
- 3.1.2.6.11.2.1 Sélecteur de données Comm-B, BDS. Le code BDS de 8 bits doit déterminer le registre dont le contenu doit être transféré dans le champ MB de la réponse Comm-B. Il doit se présenter sous la forme de deux groupes de 4 bits chacun, BDS1 (les 4 bits de poids fort) et BDS2 (les 4 bits de poids faible).
- Note.— L'attribution des registres de transpondeur est spécifiée dans le Tableau 5-24 de l'Annexe 10, Volume III, Partie 1, Chapitre 5.
- 3.1.2.6.11.2.2 Code BDS1. Le code BDS1 est le code défini dans le champ RR d'une interrogation de surveillance ou Comm-A.
- 3.1.2.6.11.2.3 Code BDS2. Le code BDS2 est le code défini dans le sous-champ RRS de SD (§ 3.1.2.6.1.4.1) lorsque DI = 7 ou DI = 3. Si aucun code BDS2 n'est spécifié (c.-à-d. si DI n'est égal ni à 7 ni à 3), cela signifie que BDS2 = 0.
- 3.1.2.6.11.2.4 *Protocole*. A la réception d'une telle demande, le champ MB de la réponse doit contenir le contenu du registre Comm-B déclenché au sol demandé.
- 3.1.2.6.11.2.4.1 Si le registre demandé n'est pas desservi par l'installation de bord, le transpondeur doit répondre et le champ MB de la réponse doit être rempli de 0.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 56 de 133 1 Janvier 2016

3.1.2.6.11.2.5 Commande de recouvrement (OVC). Si le code « DI » de l'interrogation demandant une réponse Comm-B est égale à 0, 3 ou 7, le champ SD contient le champ OVC conformément au § 3.1.2.6.1.4.1, alinéa i).

- a) Si OVC = 1, la réponse à l'interrogation doit contenir le champ DP (parité de données), conformément au § 3.1.2.3.2.1.5 ;
- b) Si OVC = 0, la réponse à l'interrogation doit contenir le champ AP conformément au § 3.1.2.3.2.1.3.
- 3.1.2.6.11.3 Comm-B déclenché à bord
- 3.1.2.6.11.3.1 *Protocole général.* Le transpondeur doit annoncer la présence d'un message Comm-B déclenché à bord en insérant le code 1 dans le champ DR. Pour extraire un tel message, l'interrogateur doit demander une réponse Comm-B à l'aide d'une interrogation ultérieure avec RR = 16, et si DI = 7, RRS doit être égal à 0 (§ 3.1.2.6.11.3.2.1 et 3.1.2.6.11.3.3.1). La réception de ce code de demande conduit le transpondeur à transmettre le message Comm-B déclenché à bord. Si une commande de transmission d'un tel message est reçue alors qu'aucun message n'est en attente de transmission, la réponse ne doit contenir que des 0 dans le champ MB.

La réponse contenant le message doit continuer de contenir le code 1 dans le champ DR. A la suite de la clôture d'une transaction Comm-B, le message doit être annulé et le code DR appartenant à ce message doit être immédiatement retiré. Si un autre message Comm-B déclenché à bord est en attente de transmission, le transpondeur doit positionner le code DR à 1, de sorte que la réponse contienne l'annonce de ce prochain message.

Note.— Le protocole d'annonce et d'annulation garantit qu'un message déclenché à bord ne sera pas perdu à cause d'une défaillance de la liaison montante ou de la liaison descendante en cours de remise.

3.1.2.6.11.3.2 Protocole supplémentaire pour Comm-B déclenché à bord multisite

Note.— L'annonce d'un message Comm-B déclenché à bord en attente de remise peut être accompagnée d'un compte rendu de statut de réservation multisite dans le champ UM (§ 3.1.2.6.5.3.2).

Un interrogateur peut ne pas tenter d'extraire un message s'il a déterminé qu'il ne constitue pas le site réservé.

3.1.2.6.11.3.2.1 *Transfert de message*. Un interrogateur doit demander une réservation Comm-B et extraire un message Comm-B déclenché à bord en transmettant une interrogation de surveillance ou Comm-A dans laquelle UF = 4, 5, 20 ou 21 et contenant :

RR = 16

DI = 1

IIS = identificateur d'interrogateur assigné

MBS = 1 (demande de réservation Comm-B)

Note.— Une demande de réservation Comm-B multisite est normalement accompagnée d'une demande de statut de réservation Comm-B (RSS = 1). Cela provoque l'insertion de l'identificateur d'interrogateur du site réservé dans le champ UM de la réponse.

3.1.2.6.11.3.2.1.1 La procédure de protocole applicable à la suite de cette interrogation dépend de l'état du temporisateur B qui indique si une réservation Comm-B est en vigueur. Ce temporisateur doit fonctionner pendant T_R secondes.

Note 1.— La valeur de T_R est donnée au § 3.1.2.10.3.9.

a) Si le temporisateur B ne fonctionne pas, le transpondeur doit accorder une réservation à l'interrogateur demandeur :

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 57 de 133 1 Janvier 2016

- 1) en stockant l'IIS de l'interrogation en tant qu'Il Comm-B;
- 2) en mettant en marche le temporisateur B.

Le transpondeur ne doit pas accorder de réservation Comm-B multisite à moins qu'un message Comm-B déclenché à bord ne soit en attente de transmission et que l'interrogation exprimant la demande ne contienne RR = 16, DI = 1, MBS = 1 et $IIS \neq 0$.

- b) Si le temporisateur B est en fonctionnement et si l'IIS de l'interrogation est égal à l'II Comm-B, le transpondeur doit redémarrer le temporisateur B.
- c) Si le temporisateur B est en fonctionnement et si l'IIS de l'interrogation n'est pas égal à l'II Comm-B, il ne doit y avoir aucun changement en ce qui concerne l'II Comm-B ou le temporisateur B.

Note 2.— Dans le cas c), la réservation demandée n'a pas été accordée.

- 3.1.2.6.11.3.2.1.2 Dans chaque cas, le transpondeur doit répondre avec le message Comm-B dans le champ MB.
- 3.1.2.6.11.3.2.1.3 Un interrogateur doit déterminer s'il constitue le site réservé à ce message grâce au codage du champ UM. S'il est le site réservé, il doit tenter de clôturer le message dans une interrogation ultérieure. S'il n'est pas le site réservé, il ne doit pas tenter de clôturer le message.
- 3.1.2.6.11.3.2.2 Transmissions de Comm-B dirigés multisites. Pour diriger vers un interrogateur déterminé un message Comm-B déclenché à bord, on doit utiliser le protocole Comm-B multisite. Si le temporisateur B ne fonctionne pas, l'identificateur d'interrogateur de la destination désirée doit être stocké en tant qu'll Comm-B. Simultanément, le temporisateur B doit être mis en route et le code DR doit être positionné à 1. Pour un message Comm-B dirigé multisite, le temporisateur B ne doit pas s'arrêter automatiquement mais doit continuer de fonctionner :
 - a) jusqu'à ce que le message soit lu et clôturé par le site réservé ; ou
 - b) jusqu'à ce que le message soit annulé (§ 3.1.2.10.5.4) par l'avionique de liaison de données.

Note.— Les protocoles des § 3.1.2.6.5.3 et 3.1.2.6.11.3.2.1 permettront alors la remise du message au site réservé. L'avionique de liaison de données peut annuler le message si la remise à ce site ne peut pas se faire.

3.1.2.6.11.3.2.3 Clôture Comm-B multisite. L'interrogateur doit effectuer la clôture d'un message Comm-B multisite déclenché à bord en transmettant soit une interrogation de surveillance, soit une interrogation Comm-A contenant :

soit DI = 1

IIS = identificateur d'interrogateur assigné

MBS = 2 (clôture Comm-B)

ou DI = 0, 1 ou 7

IIS = identificateur d'interrogateur assigné

PC = 4 (clôture Comm-B).

Le transpondeur doit comparer l'IIS de l'interrogation à l'II Comm-B et, si les identificateurs d'interrogateur ne correspondent pas, le message ne doit pas être libéré et l'état de l'II Comm-B, l'état du temporisateur B et l'état du code DR doivent rester sans changement. Si les identificateurs d'interrogateur correspondent, le transpondeur doit positionner l'II Comm-B à 0, remettre en route le temporisateur B, libérer le code DR de ce message et libérer le message lui-même. Le transpondeur ne doit pas effectuer la clôture d'un message Comm-B multisite déclenché à bord à moins que le message n'ait été lu au moins une fois par le site réservé.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 58 de 133 1 Janvier 2016

3.1.2.6.11.3.2.4 Expiration automatique d'une réservation Comm-B. Si la période du temporisateur B se termine avant qu'une clôture multisite ait été effectuée, l'Il Comm-B doit être positionné à 0 et le temporisateur B remis à l'état initial. Le message Comm-B et le champ DR ne doivent pas être libérés par le transpondeur.

Note.— Cela permet à un autre site de lire et de libérer ce message.

3.1.2.6.11.3.3 Protocole supplémentaire pour Comm-B déclenché à bord non sélectif

- Note.— Dans les cas où les protocoles multisites ne sont pas nécessaires (i.e. en cas de nonchevauchement de couverture ou de coordination des interrogateurs par communications sol-sol), le protocole supplémentaire pour Comm-B déclenché à bord non sélectif peut être utilisé.
- 3.1.2.6.11.3.3.1 *Transfert de message*. L'interrogateur doit extraire le message en transmettant soit RR = 16 et DI \neq 7, ou RR = 16, DI = 7 et RRS = 0 dans une interrogation de surveillance ou Comm-A.
- 3.1.2.6.11.3.3.2 Clôture Comm-B. L'interrogateur doit effectuer la clôture d'un message Comm-B déclenché à bord non sélectif en transmettant PC = 4 (clôture Comm-B). À la réception de cette commande, le transpondeur doit effectuer la clôture, à moins que le temporisateur B ne soit en marche. Si le temporisateur B est en marche, ce qui veut dire qu'une réservation multisite est en vigueur, la clôture doit être effectuée conformément aux dispositions du § 3.1.2.6.11.3.2.3. Le transpondeur ne doit pas effectuer la clôture d'un message Comm-B déclenché à bord non sélectif à moins que ce message n'ait été lu au moins une fois par une interrogation utilisant des protocoles non sélectifs.

3.1.2.6.11.3.4 Protocole Comm-B déclenché à bord renforcé

- Note.— Le protocole Comm-B déclenché à bord renforcé offre une capacité de liaison de données supérieure en permettant la remise parallèle de messages Comm-B déclenchés à bord par un maximum de 16 interrogateurs, un pour chaque code II. Le fonctionnement sans la nécessité de réservations Comm-B multisites est possible dans les régions où il y a chevauchement de couverture pour les interrogateurs équipés pour le protocole Comm-B déclenché à bord renforcé. Ce protocole se conforme pleinement au protocole multisite standard et est donc compatible avec des interrogateurs qui ne sont pas équipés pour le protocole renforcé.
- 3.1.2.6.11.3.4.1 Le transpondeur doit être capable de stocker, pour chacun des seize codes II : 1) un message Comm-B déclenché à bord ou dirigé multisite et 2) la teneur des registres 2 à 4 GICB.
- Note.— Les registres 2 à 4 GICB sont utilisés pour le protocole de liaison Comm-B défini dans les SARP relatives au sous-réseau mode S (Annexe 10, Volume III, Partie 1, Chapitre 5).
 - 3.1.2.6.11.3.4.2 Protocole de message Comm-B déclenché à bord multisite renforcé
- 3.1.2.6.11.3.4.2.1 *Déclenchement*. Un message Comm-B déclenché à bord introduit dans le transpondeur doit être stocké dans les registres assignés à II = 0.
- 3.1.2.6.11.3.4.2.2 Annonce et extraction. Un message Comm-B déclenché à bord qui est en attente doit être annoncé dans le champ DR des réponses à tous les interrogateurs pour lesquels un message Comm-B dirigé multisite n'est pas en attente. Le champ UM de la réponse contenant l'annonce doit indiquer que le message n'est réservé pour aucun code II, c'est-à-dire que le sous-champ IIS doit être positionné à 0. Lorsqu'une commande de lecture de ce message est reçue d'un interrogateur donné, la réponse contenant le message doit contenir un sous-champ IIS indiquant que le message est réservé pour le code II contenu dans l'interrogation provenant de cet interrogateur. Après lecture et jusqu'à la clôture, le message doit continuer d'être assigné à ce code II. Une fois qu'un message est assigné à un code II spécifique, l'annonce de ce message ne doit plus être faite dans les réponses aux interrogateurs avec d'autres codes II. Si le message n'est pas clôturé par l'interrogateur assigné pendant la période du temporisateur B, le message revient à l'état déclenché à bord multisite et le processus se répète. Un seul message Comm-B déclenché à bord multisite doit être en traitement à la fois.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 59 de 133 1 Janvier 2016

- 3.1.2.6.11.3.4.2.3 *Clôture*. La clôture d'un message déclenché à bord multisite ne doit être acceptée qu'en provenance de l'interrogateur qui est actuellement assigné pour transférer le message.
- 3.1.2.6.11.3.4.2.4 Annonce du message suivant en attente. Le champ DR doit indiquer un message en attente dans la réponse à une interrogation contenant une clôture Comm-B si un message déclenché à bord non assigné est en attente et qu'il n'a pas été assigné à un code II, ou si un message dirigé multisite est en attente de ce code II (§ 3.1.2.6.11.3.4.3).
 - 3.1.2.6.11.3.4.3 Protocole Comm-B dirigé multisite renforcé
- 3.1.2.6.11.3.4.3.1 *Déclenchement*. Lorsqu'un message dirigé multisite est introduit dans le transpondeur, il doit être placé dans les registres Comm-B assignés au code II spécifié pour le message. Si les registres pour ce code II sont déjà occupés (c.-à-d. qu'un message dirigé multisite est déjà en traitement à destination de ce code II), le nouveau message doit être mis en file d'attente jusqu'à ce que la transaction en cours avec ce code II soit clôturée.
- 3.1.2.6.11.3.4.3.2 Annonce. L'annonce d'un message Comm-B en attente de transfert doit être faite au moyen du champ DR spécifié au § 3.1.2.6.5.2 avec le code II de l'interrogateur de destination contenu dans le sous-champ IIS spécifié au § 3.1.2.6.5.3.2. La teneur du champ DR et du sous-champ IIS doit être réglée spécifiquement pour l'interrogateur qui doit recevoir la réponse. Un message dirigé multisite en attente ne doit être annoncé que dans les réponses à l'interrogateur destinataire. Il ne doit pas être annoncé dans les réponses à d'autres interrogateurs.
- Note 1.— Si un message dirigé multisite est en attente de II = 2, les réponses de surveillance à cet interrogateur contiendront DR = 1 et IIS = 2. S'il s'agit du seul message en traitement, les réponses à tous les autres interrogateurs indiqueront qu'aucun message n'est en attente.
- Note 2.— Outre qu'elle permet le fonctionnement parallèle, cette forme d'annonce permet un degré plus élevé d'annonces d'ELM descendants. Les annonces pour les ELM descendants et les messages Comm-B partagent le champ DR. Une seule annonce peut être effectuée à la fois à cause des limitations de codage. Dans le cas où un Comm-B et un ELM descendant sont en attente, la préférence pour l'annonce est donnée au Comm-B. Dans l'exemple ci-dessus, si un Comm-B dirigé était en attente de II = 2 et qu'un ELM descendant dirigé multisite était en attente de II = 6, les deux interrogateurs verraient leurs annonces respectives pendant le premier tour d'antenne puisqu'il n'y aurait pas d'annonce de Comm-B à II = 6 pour bloquer l'annonce de l'ELM descendant en attente.
 - 3.1.2.6.11.3.4.3.3 Clôture. La clôture doit être effectuée de la manière indiquée au § 3.1.2.6.11.3.2.3.
- 3.1.2.6.11.3.4.3.4 Annonce du message suivant en attente. Le champ DR doit indiquer un message en attente dans la réponse à une interrogation contenant une clôture Comm-B si un autre message dirigé multisite est en attente de ce code II, ou si un message déclenché à bord est en attente et n'a pas été assigné à un code II (voir § 3.1.2.6.11.3.4.2.4).
- 3.1.2.6.11.3.4.4 Protocole Comm-B non sélectif renforcé. La disponibilité d'un message Comm-B non sélectif doit être annoncée à tous les interrogateurs. Autrement, le protocole doit être comme spécifié au § 3.1.2.6.11.3.3.

3.1.2.6.11.4 Message diffusé Comm-B

- Note 1.— Un message Comm-B peut être diffusé à tous les interrogateurs actifs à portée de l'émetteur. Ces messages sont numérotés alternativement 1 et 2 et s'annulent d'eux-mêmes après 18 s. Les interrogateurs n'ont aucun moyen d'annuler les messages diffusés Comm-B.
- Note 2.— L'utilisation des messages diffusés Comm-B est limitée à la transmission d'informations qui n'appellent pas de réponse du sol sur liaison montante.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 60 de 133 1 Janvier 2016

Note 3.— Le temporisateur utilisé pour le cycle de messages diffusés Comm-B est le même que celui qui est utilisé pour le protocole multisite Comm-B.

Note 4.— Les formats de données pour les diffusions Comm-B sont spécifiés dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI.

3.1.2.6.11.4.1 *Déclenchement*.

- 3.1.2.6.11.4.1.1 Un cycle de diffusion Comm-B doit commencer par :
 - a) le chargement du message diffusé dans le tampon Comm-B;
 - b) le démarrage du temporisateur B pour le message Comm-B en cours ;

Note.— S'il y a plus d'un message Comm-B en attente d'émission, le temporisateur n'est démarré que lorsque le message devient le message diffusé Comm-B en cours.

- c) le choix du code DR 4 ou 5 (§ 3.1.2.6.5.2), à insérer dans les futures réponses comportant DF 4, 5, 20 ou 21 lorsque l'information ACAS n'est pas disponible, ou du code DR 6 ou 7 lorsque l'information ACAS est disponible.
- 3.1.2.6.11.4.1.2 Le champ DR doit passer à la valeur suivante chaque fois que le transpondeur déclenche un nouveau message diffusé Comm-B.
- Note.— L'interrogateur utilise le changement de valeur de DR pour détecter l'annonce d'un nouveau message diffusé Comm-B et pour extraire le nouveau message Comm-B.
- 3.1.2.6.11.4.1.3 Aucun cycle de diffusion Comm-B ne doit être déclenché lorsqu'un message Comm-B déclenché à bord est en attente d'émission.
- 3.1.2.6.11.4.1.4 Un nouveau cycle de diffusion Comm-B ne doit pas interrompre un cycle de diffusion Comm-B en cours.
- 3.1.2.6.11.4.2 Extraction. Pour extraire le message diffusé, l'interrogateur doit transmettre RR = 16 et DI \neq 3 ou 7, ou RR = 16 et DI = 3 ou 7 avec RRS = 0 dans une interrogation ultérieure.
- 3.1.2.6.11.4.3 *Expiration*. Lorsque le temps de fonctionnement du temporisateur B prend fin, le transpondeur doit libérer le code DR pour ce message, mettre au rebut le message diffusé en cours et changer le numéro de message diffusé (de 1 à 2 ou 2 à 1) en vue d'un message diffusé Comm-B ultérieur.
- 3.1.2.6.11.4.4 Interruption. Pour éviter qu'un cycle de messages diffusés Comm-B ne retarde la remise d'un message Comm-B déclenché à bord, il doit être prévu qu'un message Comm-B déclenché à bord puisse interrompre un cycle de messages diffusés Comm-B. Si un cycle de messages diffusés est interrompu, le temporisateur B doit être remis à zéro, le message interrompu doit être conservé et le numéro de message ne doit pas être modifié. La remise du message diffusé interrompu doit reprendre dès qu'il n'y a plus aucune transaction de Comm-B déclenché à bord. Le message doit être alors diffusé pendant toute la durée de fonctionnement du temporisateur B.
- 3.1.2.6.11.4.5 Protocole de message diffusé Comm-B renforcé. Un message diffusé Comm-B doit être annoncé à tous les interrogateurs qui utilisent les codes II. Le message doit rester actif pendant la période du temporisateur B pour chaque code II. La disposition concernant l'interruption d'une diffusion par un message Comm-B non diffusé, comme il est spécifié au § 3.1.2.6.11.4.4, doit s'appliquer séparément à chaque code II. Lorsque la période du temporisateur B est réalisée pour tous les codes II, le message diffusé doit être automatiquement libéré comme spécifié au § 3.1.2.6.11.4.3. Aucun nouveau message diffusé ne doit être déclenché avant que le message en cours ne soit libéré.

Note.— Du fait que l'interruption du message diffusé intervient indépendamment pour chaque code II, il est possible que l'arrêt du message diffusé intervienne à des heures différentes pour des codes II différents.

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 61 de 133 1 Janvier 2016

3.1.2.6.11.4.6 *Gestion des messages Comm-B en attente d'émission*. Si le contenu d'un message diffusé Comm-B en attente est actualisé, seule la valeur la plus récente de chaque identificateur de transmission sur liaison descendante doit être conservée et diffusée une fois la diffusion Comm-B en cours terminée.

Note.— Les identificateurs de transmission sur liaison descendante sont définis dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871).

3.1.2.7 TRANSACTIONS DE COMMUNICATION DE LONGUE DUREE

- Note 1.— Les messages longs peuvent être transférés, sur la liaison montante comme sur la liaison descendante, grâce aux protocoles de message étendu (ELM), à l'aide, selon le cas, des formats Comm-C (UF = 24) ou Comm-D (DF = 24). Le protocole ELM montant permet de transmettre sur la liaison montante un maximum de 16 segments de messages de 80 bits avant d'exiger une réponse du transpondeur. Les protocoles permettent également une procédure correspondante sur la liaison descendante.
- Note 2.— Dans certains cas de chevauchement de la couverture de plusieurs interrogateurs, il n'y a pas toujours de moyen de coordonner le fonctionnement des interrogateurs à l'aide de communications au sol. Toutefois, les protocoles de communication ELM nécessitent plus d'une transaction. Une coordination s'impose donc pour éviter que des segments de différents messages soient entrelacés et que les transactions soient involontairement clôturées par un interrogateur auquel elles ne sont pas destinées. Cela peut être obtenu par l'utilisation des protocoles de communication multisites ou par l'utilisation des protocoles ELM renforcés.
- Note 3.— Les messages descendants étendus ne sont transmis qu'après autorisation de l'interrogateur. Les segments à transmettre sont contenus dans des réponses Comm-D. Comme pour les messages Comm-B déclenchés à bord, les ELM descendants sont annoncés à tous les interrogateurs, ou dirigés vers un interrogateur déterminé. Dans le premier cas, un interrogateur peut se servir du protocole multisite pour se réserver la possibilité de clôturer la transaction ELM descendante. Un transpondeur peut recevoir l'ordre d'identifier l'interrogateur qui l'a réservé pour une transaction ELM. Seul cet interrogateur peut clôturer la transaction ELM et la réservation.
- Note 4.— Le protocole multisite et le protocole non sélectif ne peuvent pas être utilisés simultanément en cas de chevauchement de couverture des interrogateurs, à moins que ceux-ci ne coordonnent leurs activités de communication à l'aide de communications au sol.

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 62 de 133 1 Janvier 2016

3.1.2.7.1 COMM-C, FORMAT MONTANT 24

1	3	5	9		89
UF	RC	NC		MC	AP
2	:	4	8	88	112

Le format de cette interrogation doit comprendre les champs suivants :

Champ	Référence (§)
UF format montant	3.1.2.3.2.1.1
RC contrôle de réponse	3.1.2.7.1.1
NC numéro de segment C	3.1.2.7.1.2
MC message Comm-C	3.1.2.7.1.3
AP adresse/parité	3.1.2.3.2.1.3

3.1.2.7.1.1 *RC* — *Contrôle de réponse (Reply control)*. Ce champ montant de 2 bits (3-4) indique la signification du segment et la décision relative à la réponse.

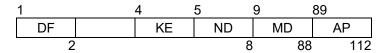
Codage

RC = 0 signifie segment initial d'ELM montant dans MC

= 1 signifie segment intermédiaire d'ELM montant dans MC

= 2 signifie segment final d'ELM montant dans MC

= 3 signifie demande de transmission d'ELM descendant (§ 3.1.2.7.7.2)


- 3.1.2.7.1.2 NC Numéro de segment C. Ce champ de message montant de 4 bits (5-8) désigne le numéro du segment de message contenu dans MC (§ 3.1.2.7.4.2.1). NC doit être codé sous forme de nombre binaire.
 - 3.1.2.7.1.3 MC Message Comm-C. Ce champ montant de 80 bits (9-88) doit contenir :
 - a) l'un des segments de la séquence utilisée pour transmettre un ELM montant au transpondeur contenant le sous-champ IIS de 4 bits (9-12) ; ou
 - b) les codes de commande pour un ELM descendant, le sous-champ SRS (§ 3.1.2.7.7.2.1) de 16 bits (9-24) et le sous-champ IIS de 4 bits (25-28).

Note.— La teneur et les codes des messages ne figurent pas dans le présent chapitre, exception faite du § 3.1.2.7.7.2.1.

3.1.2.7.2 PROTOCOLE D'INTERROGATION-REPONSE POUR UF24

Note.— La coordination des interrogations et réponses pour le format ci-dessus suit le protocole représenté au Tableau 3-5 (§ 3.1.2.4.1.3.2.2).

3.1.2.7.3 COMM-D, FORMAT DESCENDANT 24

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 63 de 133

Janvier 2016

Le format de cette réponse doit comprendre les champs suivants :

Champ	Référence (§)
DF format descendant en réserve — 1 bit	3.1.2.3.2.1.2
KE contrôle ELM	3.1.2.7.3.1
ND numéro de segment D	3.1.2.7.3.2
MD message Comm-D	3.1.2.7.3.3
AP adresse/parité	3.1.2.3.2.1.3

3.1.2.7.3.1 *KE — Contrôle ELM*. Ce champ descendant de 1 bit (4) définit la teneur des champs ND et MD.

Codage

KE = 0 signifie transmission d'un ELM descendant

= 1 signifie accusé de réception d'un ELM montant

- 3.1.2.7.3.2 *ND Numéro de segment D*. Ce champ descendant de 4 bits (5-8) désigne le numéro du segment de message contenu dans MD (§ 3.1.2.7.7.2). ND doit être codé sous forme de nombre binaire.
 - 3.1.2.7.3.3 *MD Message Comm-D*. Ce champ descendant de 80 bits (9-88) doit contenir :
 - a) l'un des segments de la séquence utilisée pour transmettre un ELM descendant à l'interrogateur ; ou
 - b) les codes de commande pour un ELM montant.
 - 3.1.2.7.4 PROTOCOLE ELM MONTANT MULTISITE
- 3.1.2.7.4.1 *Réservation ELM montant multisite*. L'interrogateur doit demander une réservation pour un ELM montant en transmettant une interrogation de surveillance ou Comm-A contenant :

DI = 1

IIS = identificateur d'interrogateur assigné

MES = 1 ou 5 (demande de réservation ELM montant)

- Note.— Une demande de réservation ELM montant multisite est normalement accompagnée d'une demande de statut de réservation ELM montant (RSS = 2). Dans ces conditions, l'identificateur d'interrogateur du site réservé est inséré dans le champ UM de la réponse.
- 3.1.2.7.4.1.1 La procédure de protocole applicable à la suite de cette interrogation dépend de l'état du temporisateur C qui indique si une réservation ELM montant est en vigueur. Ce temporisateur doit fonctionner pendant T_R secondes.

Note 1.— La valeur de T_R est donnée au § 3.1.2.10.3.9.

- a) Si le temporisateur C ne fonctionne pas, le transpondeur doit accorder une réservation à l'interrogateur demandeur :
 - 1) en stockant l'IIS de l'interrogation en tant qu'Il Comm-C ; et
 - 2) en mettant en marche le temporisateur C.
- b) Si le temporisateur C fonctionne et si l'IIS de l'interrogation est égal à l'II Comm-C, le transpondeur doit redémarrer le temporisateur C.
- c) Si le temporisateur C fonctionne et si l'IIS de l'interrogation est différent de l'II Comm-C, il ne doit y avoir aucun changement en ce qui concerne l'II Comm-C ou le temporisateur C.
- Note 2.— Dans le cas c), la réservation demandée n'a pas été accordée.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 64 de 133 1

Janvier 2016

3.1.2.7.4.1.2 Un interrogateur ne doit amorcer une activité ELM que si, ayant demandé le statut d'une réservation ELM montant, il reçoit, pendant le même tour d'antenne, son propre identificateur comme identificateur de l'interrogateur réservé pour l'ELM montant dans le champ UM.

- Note.— Si l'activité ELM n'a pas commencé pendant le même tour d'antenne que la réservation, une nouvelle demande de réservation peut être faite pendant le tour d'antenne suivant.
- 3.1.2.7.4.1.3 Si la remise de l'ELM montant n'est pas terminée pendant un tour d'antenne, l'interrogateur doit s'assurer qu'il a une réservation avant de remettre les segments supplémentaires pendant un tour d'antenne ultérieur.
- 3.1.2.7.4.2 Remise d'un ELM montant multisite. Un ELM montant doit comprendre un minimum de deux segments et un maximum de 16 segments.
- 3.1.2.7.4.2.1 Transfert du segment initial. Pour remettre un ELM montant de n segments (valeur de NC de 0 à n-1), l'interrogateur doit commencer par transmettre un message Comm-C dans lequel RC = 0. Le segment de message transmis dans le champ MC doit être le dernier segment du message et doit comporter NC = n-1.

A la réception d'un segment initial (RC = 0), le transpondeur doit effectuer l'opération d'initialisation ci-après

- a) il efface le numéro et le contenu des registres de stockage du segment précédent et du champ TAS associé;
- b) il réserve un espace de stockage correspondant au nombre de segments annoncés dans le champ NC de cette interrogation ;
- c) il stocke le contenu du champ MC du segment reçu.

Le transpondeur ne doit pas répondre à cette interrogation.

Le transpondeur doit refaire cette initialisation chaque fois qu'il recevra un autre segment initial.

- 3.1.2.7.4.2.2 Accusé de réception de transmission. Le transpondeur doit utiliser le sous-champ TAS pour indiquer les segments déjà reçus dans une séquence ELM montante. L'information contenue dans le sous-champ TAS doit être constamment mise à jour à mesure que les segments sont reçus.
- Note.— Les segments perdus pendant la transmission montante sont repérés par leur absence dans le compte rendu TAS et sont retransmis par l'interrogateur, qui envoie alors d'autres segments finals pour permettre de déterminer dans quelle mesure le message est complet.
- 3.1.2.7.4.2.2.1 *TAS, sous-champ accusé de réception de transmission dans MD*. Ce sous-champ de message descendant de 16 bits (17-32) de MD indique les segments déjà reçus dans une séquence ELM montante. En commençant par le bit 17, qui correspond au segment 0, chacun des bits suivants doit être positionné à 1 si le segment correspondant de la séquence a été reçu. TAS doit apparaître dans MD si KE = 1 dans la même réponse.
- 3.1.2.7.4.2.3 Transfert des segments intermédiaires. L'interrogateur doit transmettre des segments intermédiaires en transférant des interrogations Comm-C avec RC = 1. Le transpondeur ne doit stocker les segments et ne doit mettre à jour le TAS que si l'initialisation mentionnée au § 3.1.2.7.4.2.1 a été faite et si le NC reçu est inférieur à la valeur stockée à la réception du segment initial. La réception d'un segment intermédiaire ne doit appeler aucune réponse.
 - Note.— Les segments intermédiaires peuvent être transmis dans n'importe quel ordre.
- 3.1.2.7.4.2.4 *Transfert du segment final*. L'interrogateur doit transférer un segment final en transmettant une interrogation Comm-C avec RC = 2. Le transpondeur doit stocker le contenu du champ MC et mettre à jour le TAS si l'initialisation mentionnée au § 3.1.2.7.4.2.1 a été faite et si le NC reçu est inférieur à la valeur du NC

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 65 de 133 1

Janvier 2016

du segment initial. Dans toutes les circonstances, le transpondeur doit répondre comme il est indiqué au § 3.1.2.7.4.2.5.

- Note 1.— Cette interrogation de transfert du segment final peut contenir un segment de message quelconque.
- Note 2.— RC = 2 est transmis au moment, quel qu'il soit, où l'interrogateur veut recevoir le sous-champ TAS dans la réponse. Par conséquent, il peut y avoir transfert de plus d'un segment « final » pendant la remise d'un ELM montant.
- 3.1.2.7.4.2.5 Réponse accusé de réception. A la réception d'un segment final, le transpondeur doit transmettre une réponse Comm-D (DF = 24), avec KE = 1, le sous-champ TAS étant dans le champ MD. Cette réponse doit être transmise $128 \pm 0,25 \,\mu s$ après l'inversion de phase synchro de l'interrogation contenant le segment final.
- 3.1.2.7.4.2.6 *Message terminé*. Le transpondeur doit considérer le message comme terminé si tous les segments annoncés par le NC du segment initial ont été reçus. Si le message est terminé, son contenu doit être diffusé à l'extérieur par l'intermédiaire de l'interface ELM du § 3.1.2.10.5.2.1.3 et libéré. Aucun segment reçu ultérieurement ne doit être stocké. Le contenu de TAS doit rester inchangé jusqu'à ce qu'une nouvelle initialisation soit requise (§ 3.1.2.7.4.2.1) ou jusqu'à la clôture (§ 3.1.2.7.4.2.8).
- 3.1.2.7.4.2.7 Redémarrage du temporisateur C. Le temporisateur C doit être remis en marche chaque fois que l'Il Comm-C sera différent de 0.
- Note.— Le fait que l'Il Comm-C doit être différent de zéro empêche le redémarrage du temporisateur C pendant toute transaction ELM montante non sélective.
- 3.1.2.7.4.2.8 *Clôture ELM montant multisite*. La clôture doit s'effectuer au moyen d'une interrogation de surveillance ou Comm-A contenant :

soit DI = 1

IIS = identificateur d'interrogateur assigné

MES = 2, 6 ou 7 (clôture ELM montant)

ou DI = 0, 1 ou 7

IIS = identificateur d'interrogateur assigné

PC = 5 (clôture ELM montant)

Le transpondeur doit comparer l'identificateur d'interrogateur et l'Il Comm-C et, s'ils ne correspondent pas, l'état du processus ELM montant doit rester sans changement.

- Si les identificateurs d'interrogateur correspondent, le transpondeur doit positionner l'II Comm-C à 0, remettre le temporisateur C à l'état initial, libérer le TAS stocké et éliminer tout segment stocké d'un message incomplet.
- 3.1.2.7.4.2.9 Clôture automatique d'un ELM montant multisite. Si la période de fonctionnement du temporisateur C prend fin avant qu'une clôture multisite ait été effectuée, les mesures de clôture décrites au § 3.1.2.7.4.2.8 doivent être déclenchées automatiquement par le transpondeur.

3.1.2.7.5 ELM MONTANT NON SELECTIF

Note.— Lorsque les protocoles multisites ne sont pas nécessaires (p. ex. en cas de non-chevauchement de couverture ou de coordination des interrogateurs par communications sol-sol), on peut utiliser le protocole ELM montant non sélectif.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 66 de 133 1 Janvier 2016

La remise d'un ELM montant non sélectif doit s'effectuer, comme celle des ELM montants multisites, de la manière décrite au § 3.1.2.7.4.2. La clôture d'un ELM montant doit être effectuée par transmission d'une interrogation de surveillance ou Comm-A contenant PC = 5 (clôture ELM montant). À la réception de cette commande, le transpondeur doit procéder à la clôture, sauf si le temporisateur C est en fonctionnement. Si le temporisateur C fonctionne, ce qui indique qu'une réservation multisite est en vigueur, la clôture doit être effectuée de la manière indiquée au § 3.1.2.7.4.2.8. Tout message incomplet au moment de l'acceptation de la clôture doit être annulé.

3.1.2.7.6 PROTOCOLE ELM MONTANT RENFORCE

Note.— Le protocole ELM montant renforcé offre une capacité de liaison de données supérieure en permettant la remise parallèle de messages ELM montants par un maximum de 16 interrogateurs, un pour chaque code II. Le fonctionnement sans la nécessité de réservations ELM montant multisites est possible dans les régions où il y a chevauchement de couverture pour les interrogateurs équipés pour le protocole ELM montant renforcé. Ce protocole se conforme pleinement au protocole multisite standard et est donc compatible avec des interrogateurs qui ne sont pas équipés pour le protocole renforcé.

3.1.2.7.6.1 Généralités

- 3.1.2.7.6.1.1 L'interrogateur doit déterminer, à partir du compte rendu de capacité de liaison de données, si le transpondeur accepte les protocoles renforcés. Si les protocoles renforcés ne sont acceptés ni par l'interrogateur ni par le transpondeur, les protocoles de réservation multisites spécifiés au § 3.1.2.7.4.1 doivent être utilisés.
- Note.— Si le transpondeur accepte les protocoles renforcés, les ELM montants remis en utilisant le protocole multisite peuvent être remis sans réservation préalable.
- 3.1.2.7.6.1.2 Lorsque le transpondeur et l'interrogateur sont équipés pour le protocole renforcé, l'interrogateur peut utiliser le protocole montant renforcé.
- 3.1.2.7.6.1.3 Le transpondeur doit être capable de stocker un message de 16 segments pour chacun des 16 codes II.
- 3.1.2.7.6.2 *Traitement des réservations*. Le transpondeur doit assurer le traitement des réservations pour chaque code II, comme spécifié au § 3.1.2.7.4.1.
- Note 1.— Le traitement des réservations est requis pour les interrogateurs qui n'acceptent pas le protocole renforcé.
- Note 2.— Puisque le transpondeur peut traiter des ELM montants simultanés pour les 16 codes II, une réservation sera toujours accordée.
- 3.1.2.7.6.3 Remise et clôture d'un ELM montant renforcé. Le transpondeur doit traiter les segments reçus séparément, par code II. Pour chaque valeur de code II, la remise et la clôture d'un ELM montant doit s'effectuer de la manière indiquée au § 3.1.2.7.4.2 ; toutefois, le champ MD utilisé pour transmettre l'accusé de réception technique doit contenir également le sous-champ IIS de 4 bits (33-36).
- Note.— L'interrogateur peut utiliser le code II contenu dans l'accusé de réception technique afin de vérifier qu'il a reçu le bon accusé de réception technique.

3.1.2.7.7 PROTOCOLE ELM DESCENDANT MULTISITE

3.1.2.7.7.1 *Initialisation*. Pour annoncer la présence d'un ELM descendant de n segments, le transpondeur doit faire en sorte que le code binaire correspondant à la valeur décimale 15 + n soit disponible pour insertion dans le champ DR d'une réponse de surveillance ou Comm-B, DF = 4, 5, 20, 21. L'annonce de l'ELM doit demeurer en vigueur jusqu'à la clôture de ce message (§ 3.1.2.7.7.3, 3.1.2.7.8.1).

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 67 de 133 1 Janvier 2016

3.1.2.7.7.1.1 Réservation ELM descendant multisite. L'interrogateur doit demander une réservation pour extraction d'un ELM descendant en transmettant une interrogation de surveillance ou Comm-A contenant :

DI = 1

IIS = identificateur d'interrogateur assigné

MES = 3 ou 6 (demande de réservation ELM descendant)

- Note.— Une demande de réservation ELM descendant multisite est normalement accompagnée d'une demande de statut de réservation ELM descendant (RSS = 3). Dans ces conditions, l'II de l'interrogateur réservé est inséré dans le champ UM de la réponse.
- 3.1.2.7.7.1.1.1 La procédure de protocole applicable à la suite de cette interrogation dépend de l'état du temporisateur D qui indique si une réservation ELM descendant est en vigueur. Ce temporisateur doit fonctionner pendant T_R secondes.

Note 1.— La valeur de T_R est donnée au § 3.1.2.10.3.9.

- a) Si le temporisateur D ne fonctionne pas, le transpondeur doit accorder une réservation à l'interrogateur demandeur de la manière suivante :
 - 1) en stockant l'IIS de l'interrogation en tant qu'Il Comm-D;
 - 2) en mettant en marche le temporisateur D.

Une réservation ELM descendant multisite ne doit être accordée par le transpondeur que si un ELM descendant est en attente de transmission.

- b) Si le temporisateur D fonctionne et que l'IIS de l'interrogation soit égal à l'II Comm-D, le transpondeur doit redémarrer le temporisateur D.
- c) Si le temporisateur D fonctionne et si l'IIS de l'interrogation n'est pas égal à l'II Comm-D, il ne doit y avoir aucun changement en ce qui concerne l'II Comm-D ou le temporisateur D.
- Note 2.— Dans le cas c), la réservation demandée n'a pas été accordée.
- 3.1.2.7.7.1.1.2 Un interrogateur doit déterminer s'il constitue le site réservé en lisant le code dans le champ UM et, s'il est bien le site réservé, il est autorisé à demander la remise de l'ELM descendant. Autrement, aucune activité ELM ne doit être amorcée pendant ce tour d'antenne.
- Note.— Si l'interrogateur n'est pas le site réservé, une nouvelle demande de réservation peut être faite pendant le tour d'antenne suivant.
- 3.1.2.7.7.1.1.3 Si l'ELM descendant n'est pas remis pendant le tour d'antenne en cours, l'interrogateur doit s'assurer qu'il a toujours une réservation avant de demander des segments additionnels pendant un tour d'antenne ultérieur.
- 3.1.2.7.7.1.2 Transmissions d'ELM descendants dirigés multisites. Pour diriger un message ELM descendant vers un interrogateur déterminé, on doit utiliser le protocole ELM descendant multisite. Si le temporisateur D ne fonctionne pas, l'identificateur d'interrogateur de la destination désirée doit être stocké en tant qu'll Comm-D. Simultanément, le temporisateur D doit être mis en marche et le code DR (§ 3.1.2.7.7.1) doit être positionné. Pour un ELM descendant dirigé multisite, le temporisateur B ne doit pas s'arrêter automatiquement mais doit continuer de fonctionner :
 - a) jusqu'à ce que le message soit lu et clôturé par le site réservé ; ou
 - b) jusqu'à ce que le message soit annulé (§ 3.1.2.10.5.4) par l'avionique de liaison de données.

Note.— Les protocoles du § 3.1.2.7.7.1 permettront alors la remise du message au site réservé. L'avionique de liaison de données peut annuler le message si la remise au site réservé ne peut pas se faire.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 68 de 133

Janvier 2016

- 3.1.2.7.7.2 Remise d'ELM descendants. Pour extraire un ELM descendant, l'interrogateur doit transmettre une interrogation Comm-C avec RC = 3. Cette interrogation doit comprendre le sous-champ SRS qui spécifie les segments à transmettre. À la réception de cette demande, le transpondeur doit transmettre les segments demandés au moyen des réponses Comm-D avec KE = 0 et ND correspondant au numéro du segment dans MD. Le premier segment doit être transmis $128 \pm 0.25 \,\mu s$ après l'inversion de phase synchro de l'interrogation demandant la remise, et les segments suivants doivent être transmis à la cadence d'un segment toutes les $136 \pm 1 \,\mu s$. Si aucun message n'est en attente à la réception d'une demande de transmission de segments ELM descendants, chaque segment de réponse ne doit contenir que des 0 dans le champ MD.
 - Note 1.— Les segments demandés peuvent être transmis dans n'importe quel ordre.
- Note 2.— Les segments perdus au cours de transmissions descendantes seront demandés à nouveau par l'interrogateur lors d'une interrogation ultérieure comportant le sous-champ SRS. Ce processus est répété jusqu'à ce que tous les segments aient été transmis.
- 3.1.2.7.7.2.1 SRS Sous-champ demande de segment dans MC. Ce sous-champ montant de 16 bits (9-24) de MC demande au transpondeur de transmettre des segments ELM descendants. En commençant par le bit 9, qui indique le segment 0, chacun des bits suivants doit être positionné à 1 si la transmission du segment correspondant est demandée. SRS doit apparaître dans MC si RC = 3 dans la même interrogation.
- 3.1.2.7.7.2.2 Redémarrage du temporisateur D. Le temporisateur D doit redémarrer chaque fois qu'une demande de segments Comm-D sera reçue si l'II Comm-D est différent de zéro.
- Note.— Le fait que l'Il Comm-D doit être différent de zéro empêche le redémarrage du temporisateur D pendant toute transaction descendante non sélective.
- 3.1.2.7.7.3 *Clôture ELM descendant multisite*. La clôture d'un ELM descendant multisite doit s'effectuer au moyen d'une interrogation de surveillance ou Comm-A contenant :

soit DI = 1

IIS = identificateur d'interrogateur assigné

MES = 4, 5 ou 7 (clôture ELM descendant)

ou DI = 0, 1 ou 7

IIS = identificateur d'interrogateur assigné

PC = 6 (clôture ELM descendant)

Si les identificateurs d'interrogateur correspondent, et si suite a été donnée à une demande de transmission au moins une fois, le transpondeur doit mettre à 0 l'II Comm-D, remettre le temporisateur D à l'état initial, libérer le code DR pour ce message et libérer le message lui-même.

Si un autre ELM descendant est en attente de transmission, le transpondeur doit positionner le code DR (si aucun message Comm-B n'est en attente de remise), de manière que la réponse contienne l'annonce du message suivant.

3.1.2.7.7.4 Expiration automatique de la réservation ELM descendant. Si le temps de fonctionnement du temporisateur D prend fin avant que la clôture multisite ait été effectuée, l'II Comm-D doit être mis à 0 et le temporisateur D remis à l'état initial. Le message et le code DR ne doivent pas être libérés.

Note.— Le message peut ainsi être lu et libéré par un autre site.

3.1.2.7.8 ELM DESCENDANT NON SELECTIF

Note.— Lorsque les protocoles multisites ne sont pas nécessaires (c.-à-d. en cas de non-chevauchement de couverture ou de coordination des interrogateurs par communications sol-sol), on peut utiliser le protocole ELM descendant non sélectif.

La remise d'un ELM descendant non sélectif doit s'effectuer de la manière décrite au § 3.1.2.7.7.2.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 69 de 133 1 Janvier 2016

gateur doit clôturer un ELM descendant non

3.1.2.7.8.1 Clôture ELM descendant non sélectif. L'interrogateur doit clôturer un ELM descendant non sélectif en transmettant PC = 6 (clôture ELM descendant) dans une interrogation de surveillance ou Comm-A. A la réception de cette commande et si suite a été donnée au moins une fois à une demande de transmission, le transpondeur doit effectuer la clôture à moins que le temporisateur D ne soit en fonctionnement. Si le temporisateur D est en fonctionnement, ce qui signifie qu'une réservation multisite est en vigueur, la clôture doit être effectuée conformément aux dispositions du § 3.1.2.7.7.3.

3.1.2.7.9 PROTOCOLE ELM DESCENDANT RENFORCE

Note.— Le protocole ELM descendant renforcé offre une capacité de liaison de données supérieure en permettant la remise parallèle de messages ELM descendants par un maximum de 16 interrogateurs, un pour chaque code II. Le fonctionnement sans la nécessité de réservations ELM descendant multisites est possible dans les régions où il y a chevauchement de couverture pour les interrogateurs équipés pour le protocole ELM descendant renforcé. Ce protocole se conforme pleinement au protocole multisite standard et est donc compatible avec des interrogateurs qui ne sont pas équipés pour le protocole renforcé.

3.1.2.7.9.1 Généralités

- 3.1.2.7.9.1.1 L'interrogateur doit déterminer, à partir du compte rendu de capacité de liaison de données, si le transpondeur accepte les protocoles renforcés. Si les protocoles renforcés ne sont acceptés ni par l'interrogateur ni par le transpondeur, les protocoles de réservation multisites spécifiés au § 3.1.2.6.11 doivent être utilisés pour les ELM descendants multisites et dirigés multisites.
- Note.— Si le transpondeur accepte les protocoles renforcés, les ELM descendants remis en utilisant le protocole dirigé multisite peuvent être remis sans réservation préalable.
- 3.1.2.7.9.1.2 Lorsque le transpondeur et l'interrogateur sont équipés pour le protocole renforcé, l'interrogateur peut utiliser le protocole descendant renforcé.
 - 3.1.2.7.9.2 Protocole ELM descendant multisite renforcé
- 3.1.2.7.9.2.1 Le transpondeur doit être capable de stocker un message de 16 segments pour chacun des 16 codes II.
- 3.1.2.7.9.2.2 *Initialisation*. Un message multisite introduit dans le transpondeur doit être stocké dans les registres assignés à II = 0.
- 3.1.2.7.9.2.3 Annonce et extraction. Un message ELM descendant multisite qui est en attente doit être annoncé dans le champ DR des réponses à tous les interrogateurs pour lesquels un message ELM descendant multisite n'est pas en attente. Le champ UM de la réponse contenant l'annonce doit indiquer que le message n'est réservé pour aucun code II, c'est-à-dire que le sous-champ IIS doit être positionné à 0. Lorsqu'une commande de réservation de ce message est reçue d'un interrogateur donné, le message doit être réservé pour le code II contenu dans l'interrogation provenant de cet interrogateur. Après lecture et jusqu'à la clôture, le message doit continuer d'être assigné à ce code II. Une fois qu'un message est assigné à un code II spécifique, l'annonce de ce message ne doit plus être faite dans les réponses aux interrogateurs avec d'autres codes II. Si le message n'est pas clôturé par l'interrogateur associé pendant la période du temporisateur D, le message doit revenir à l'état multisite et le processus se répète. Un seul ELM descendant multisite doit être en traitement à la fois.
- 3.1.2.7.9.2.4 *Clôture*. La clôture d'un message multisite ne doit être acceptée qu'en provenance de l'interrogateur qui a été le plus récemment assigné pour transférer le message.
- 3.1.2.7.9.2.5 Annonce du message suivant en attente. Le champ DR doit indiquer un message en attente dans la réponse à une interrogation contenant une clôture ELM descendant si un message ELM descendant multisite non assigné est en attente, ou si un message dirigé multisite est en attente de ce code II (§ 3.1.2.7.9.2).

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 70 de 133 1 Janvier 2016

3.1.2.7.9.3 Protocole ELM descendant dirigé multisite renforcé

- 3.1.2.7.9.3.1 *Initialisation*. Lorsqu'un message dirigé multisite est introduit dans le transpondeur, il doit être placé dans les registres ELM descendant assignés au code II spécifié pour le message. Si les registres pour ce code II sont déjà occupés (c.-à-d. qu'un message ELM descendant dirigé multisite est déjà en traitement à destination de ce code II), le nouveau message doit être mis en file d'attente jusqu'à ce que la transaction en cours avec ce code II soit clôturée.
- 3.1.2.7.9.3.2 Annonce. L'annonce d'un message ELM descendant en attente de transfert doit être faite au moyen du champ DR spécifié au § 3.1.2.7.7.1 avec le code II de l'interrogateur de destination contenu dans le sous-champ IIS spécifié au § 3.1.2.6.5.3.2. Les contenus du champ DR et du sous-champ IIS doivent être réglés spécifiquement pour l'interrogateur qui doit recevoir la réponse. Un message dirigé multisite en attente ne doit être annoncé que dans les réponses à l'interrogateur destinataire. Il ne doit pas être annoncé dans les réponses à d'autres interrogateurs.
- 3.1.2.7.9.3.3 Remise. Un interrogateur doit déterminer s'il constitue le site réservé en lisant le code dans le champ UM. La remise ne doit être demandée que si l'interrogateur constitue le site réservé et doit être effectuée comme il est spécifié au § 3.1.2.7.7.2. Le transpondeur doit transmettre le message contenu dans la mémoire tampon associée au code II spécifié dans le sous-champ IIS de l'interrogation de demande de segment.
- 3.1.2.7.9.3.4 *Clôture*. La clôture doit être effectuée comme il est spécifié au § 3.1.2.7.7.3 ; toutefois, une clôture de message ne doit être acceptée qu'en provenance de l'interrogateur ayant un code II égal à celui qui a transféré le message.
- 3.1.2.7.9.3.5 Annonce du message suivant en attente. Le champ DR doit indiquer un message en attente dans la réponse à une interrogation contenant une clôture ELM descendant si un autre message dirigé multisite est en attente de ce code II, ou si un message descendant est en attente et n'a pas été assigné à un code II (§ 3.1.2.7.9.2).
- 3.1.2.7.9.4 Protocole ELM descendant non sélectif renforcé. La disponibilité d'un message ELM descendant non sélectif doit être annoncée à tous les interrogateurs. Autrement, le protocole doit être comme spécifié au § 3.1.2.7.7.

3.1.2.8 TRANSACTIONS DE SERVICE ET DE SQUITTERS AIR-AIR

Note.— Les systèmes anticollision embarqués (ACAS) utilisent les formats UF ou DF = 0 ou 16 pour la surveillance air-air.

3.1.2.8.1 SURVEILLANCE AIR-AIR COURTE, FORMAT MONTANT 0

1	9	10	14	15	33	
UF	RL		AQ	DS	AP	
5		13		22	56	

Le format de cette interrogation doit comprendre les champs suivants :

Char	mp	Référence (§)
UF	format montant en réserve — 3 bits	3.1.2.3.2.1.1
RL	longueur de réponse en réserve — 4 bits	3.1.2.8.1.2
AQ	acquisition	3.1.2.8.1.1
DS	sélecteur de données en réserve — 10 bits	3.1.2.8.1.3
AP	adresse/parité	3.1.2.3.2.1.3

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 71 de 133 1

Janvier 2016

- 3.1.2.8.1.1 AQ Acquisition. Ce champ montant de 1 bit (14) contient un code qui contrôle la teneur du champ RI (§3.1.2.8.2.2).
- 3.1.2.8.1.2 *RL Longueur de réponse (Reply length)*. Ce champ montant de 1 bit (9) détermine le format à utiliser pour la réponse.

Codage:

- 0 signifie répondre avec DF = 0
- 1 signifie répondre avec DF = 16
- Note.— Un transpondeur qui ne prend pas en charge DF = 16 (c.-à-d. un transpondeur qui n'assure pas la fonction liaison inter-ACAS et qui n'est pas associé à un système anticollision embarqué) ne répondrait pas à une interrogation UF = 0 avec RL = 1.
- 3.1.2.8.1.3 DS Sélecteur de données (Data selector). Ce champ montant de 8 bits (15-22) contient le code BDS (§ 3.1.2.6.11.2.1) du registre GICB dont le contenu doit être retourné à la réponse correspondante avec DF = 16.
 - 3.1.2.8.2 SURVEILLANCE AIR-AIR COURTE, FORMAT DESCENDANT 0

1	6	7	8 9	9	14	20	33
DF	VS	CC		SL	RI	AC	AP
;	5			11	17	32	56

Cette réponse doit être envoyée à la suite d'une interrogation avec UF = 0 et RL = 0. Le format de cette réponse doit comprendre les champs suivants :

Chai	тр	Référence (§)
DF VS	format descendant situation de l'aéronef dans le plan vertical	3.1.2.3.2.1.2 3.1.2.8.2.1
CC	capacité de liaison inter-ACAS en réserve — 1 bit	3.1.2.8.2.3
SL	niveau de sensibilité, ACAS en réserve — 2 bits	4.3.8.4.2.5
RI	information de réponse en réserve — 2 bits	3.1.2.8.2.2
AC	code d'altitude	3.1.2.6.5.4
ΑP	adresse/parité	3.1.2.3.2.1.3

3.1.2.8.2.1 *VS* — *Situation de l'aéronef dans le plan vertical (Vertical status*). Ce champ descendant de 1 bit (6) indique la situation de l'aéronef (§ 3.1.2.6.10.1.2).

Codage:

- 0 signifie que l'aéronef est en vol
- 1 signifie que l'aéronef est au sol
- 3.1.2.8.2.2 RI Information de réponse, air-air (Reply information, air-air). Ce champ descendant de 4 bits (14-17) indique la vitesse vraie maximale de croisière de l'aéronef et le type de réponse à l'aéronef interrogateur. Le codage doit être le suivant :
 - 0 signifie répondre à une interrogation air-air UF = 0 avec AQ = 0, pas d'ACAS en fonctionnement

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 72 de 133 1 Janvier 2016

1-7 réservés à l'ACA	S (cf. § 4.3.8.4.1.2)
----------------------	-----------------------

- 8-15 signifie répondre à une interrogation air-air UF = 0 avec AQ = 1 et préciser la vitesse maximale comme suit :
- 8 aucune donnée de vitesse maximale disponible
- 9 vitesse maximale inférieure ou égale à 140 km/h (75 kt)
- vitesse maximale supérieure à 140 km/h et inférieure ou égale à 280 km/h (75 et 150 kt)
- 11 vitesse maximale supérieure à 280 km/h et inférieure ou égale à 560 km/h (150 et 300 kt)
- 12 vitesse maximale supérieure à 560 km/h et inférieure ou égale à 1 110 km/h (300 et 600 kt)
- vitesse maximale supérieure à 1 110 km/h et inférieure ou égale à 2 220 km/h (600 et 1 200 kt)
- 14 vitesse maximale supérieure à 2 220 km/h (1 200 kt)
- 15 non assigné.
- 3.1.2.8.2.3 *CC Capacité de liaison inter-ACAS (Cross-link capability)*. Ce champ descendant de 1 bit (7) indique si le transpondeur est capable de prendre en charge la fonction liaison inter-ACAS, c'est-à-dire de décoder la teneur du champ DS dans une interrogation avec UF = 0 et de répondre avec la teneur du registre GICB spécifié dans la réponse correspondante avec DF = 16.

Codage

- signifie que le transpondeur ne peut pas prendre en charge la fonction de liaison inter-ACAS
- 1 signifie que le transpondeur peut prendre en charge la fonction de liaison inter-ACAS

3.1.2.8.3 SURVEILLANCE AIR-AIR LONGUE, FORMAT DESCENDANT 16

1	6	7	9	14	20	33	89	
DF	VS	CC	SL	RI	AC	MV	AP	
5	;		11	17	32	. 88	112	

Cette réponse doit être envoyée à la suite d'une interrogation avec UF = 0 et RL = 1. Le format de cette réponse doit comprendre les champs suivants :

Cham	Référence (§)	
DF	format descendant	3.1.2.3.2.1.2
VS	situation de l'aéronef dans le plan vertical	3.1.2.8.2.1
CC	capacité de liaison inter-ACAS	3.1.2.8.2.3
	en réserve — 1 bit	
SL	niveau de sensibilité, ACAS	4.3.8.4.2.5
	en réserve — 2 bits	
RI	information de réponse	3.1.2.8.2.2
	en réserve — 2 bits	
AC	code d'altitude	3.1.2.6.5.4
MV	message, ACAS	3.1.2.8.3.1
AP	adresse/parité	3.1.2.3.2.1.3

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 73 de 133 1 Janvier 2016

3.1.2.8.3.1 *MV* — *Message, ACAS*. Ce champ descendant de 56 bits (33-88) contient les informations GICB demandées dans le champ DS de l'interrogation UF = 0 qui a déclenché la réponse.

Note.— Le champ MV est utilisé par l'ACAS également pour la coordination air-air (§ 4.3.8.4.2.4).

3.1.2.8.4 PROTOCOLE DE TRANSACTION AIR-AIR

Note.— La coordination interrogation-réponse pour les formats air-air suit le protocole défini au Tableau 3-5 (§ 3.1.2.4.1.3.2.2).

Le bit de poids fort (bit 14) du champ RI d'une réponse air-air doit reprendre la valeur du champ AQ (bit 14) reçu dans une interrogation avec UF = 0.

- Si AQ = 0 dans l'interrogation, le champ RI de la réponse doit contenir la valeur 0.
- Si AQ = 1 dans l'interrogation, le champ RI de la réponse doit contenir la vitesse vraie maximale de croisière de l'aéronef exprimée selon les indications du § 3.1.2.8.2.2.

En réponse à un UF = 0 avec RL = 1 et DS \neq 0, le transpondeur doit envoyer un DF = 16 dans lequel le champ MV contient les informations stockées dans le registre GICB désigné par la valeur de DS. Si le registre demandé n'est pas desservi par l'installation de bord, le transpondeur doit répondre et le champ MV doit être rempli de 0.

3.1.2.8.5 SQUITTER D'ACQUISITION

- Note.— Les transpondeurs SSR mode S transmettent des squitters d'acquisition (transmissions descendantes non sollicitées) pour permettre l'acquisition passive par les interrogateurs à large faisceau d'antenne, lorsque l'acquisition active risque d'être gênée par le chevauchement synchrone des réponses « appel général ». Ces interrogateurs peuvent être par exemple des systèmes anticollision embarqués ou des systèmes de surveillance de surface d'aéroport.
- 3.1.2.8.5.1 Format du squitter d'acquisition. Le format utilisé pour les transmissions de squitter d'acquisition doit être le format de réponse « appel général » (DF = 11), avec II = 0.
- 3.1.2.8.5.2 Cadence de squitter d'acquisition. Les transmissions de squitter d'acquisition doivent s'effectuer à intervalles irréguliers uniformément répartis dans la plage de 0,8 à 1,2 s en utilisant une quantification du temps non supérieure à 15 ms par rapport au squitter d'acquisition précédent, avec les exceptions suivantes :
 - a) le squitter d'acquisition prévu doit être retardé si le transpondeur est dans un cycle de transaction (§ 3.1.2.4.1);
 - b) le squitter d'acquisition doit être retardé si un squitter long est en cours de traitement ;
 - c) le squitter d'acquisition prévu doit être retardé si une interface de suppression mutuelle est en fonctionnement (voir Note 1 ci-dessous) ;
 - d) à la surface, les squitters d'acquisition ne doivent être émis que si le transpondeur n'est pas en train d'émettre des squitters longs mode S du type position à la surface.

Lorsqu'elle a commencé, la transmission de squitter d'acquisition ne doit pas être interrompue par des transactions sur la liaison ou par une suppression mutuelle.

- Note 1.— Un système de suppression mutuelle peut être utilisé pour relier les équipements de bord qui fonctionnent dans la même bande de fréquences afin d'empêcher leur brouillage mutuel. L'émission de squitter d'acquisition reprend dès que possible après un intervalle de suppression mutuelle.
- Note 2.— Le type compte rendu de surface peut être choisi automatiquement par l'aéronef ou au moyen de commandes provenant d'une station sol qui utilise des squitters (§ 3.1.2.8.6.7).

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 74 de 133 1

Janvier 2016

- 3.1.2.8.5.3 Sélection de l'antenne pour le squitter d'acquisition. Les transpondeurs qui fonctionnent avec diversité d'antenne (§ 3.1.2.10.4) doivent transmettre les squitters d'acquisition comme suit :
 - a) en vol (§ 3.1.2.8.6.7): alternativement sur chacune des deux antennes;
 - b) à la surface (§ 3.1.2.8.6.7) : conformément à la commande SAS [§ 3.1.2.6.1.4.1, alinéa f)]. En l'absence de commande SAS, l'antenne utilisée par défaut doit être l'antenne supérieure.

Note.— Lorsque l'aéronef est à la surface, le transpondeur n'émet pas de squitters d'acquisition s'il est en train d'émettre des squitters longs du type surface (§ 3.1.2.8.6.4.3).

3.1.2.8.6 SQUITTER LONG, FORMAT DESCENDANT 17

1	6	9	33	89	
DF	CA	AA	ME	PI	
5	8	3 ;	32	88	112

Note.— Les transpondeurs SSR mode S utilisent les squitters longs pour la diffusion, à des fins de surveillance, des données de position calculées à bord des aéronefs. La diffusion de cette information est une forme de surveillance dépendante automatique (ADS) appelée ADS-diffusion (ADS-B).

3.1.2.8.6.1 *Format du squitter long*. Le format utilisé pour le squitter long doit être un format descendant de 112 bits (DF = 17) comprenant les champs suivants :

Chan	Référence (§)	
DF	format descendant	3.1.2.3.2.1.2
CA	possibilités	3.1.2.5.2.2.1
AA	adresse annoncée	3.1.2.5.2.2.2
ME	message sur squitter long	3.1.2.8.6.2
PΙ	parité/identificateur d'interrogateur	3.1.2.3.2.1.4

Le champ PI doit être codé II = 0.

- 3.1.2.8.6.2 *ME Message sur squitter long*. Ce champ descendant de 56 bits (33-88) du format DF = 17 doit être utilisé pour la transmission des messages de diffusion. Le squitter long doit être pris en charge par les registres 05, 06, 07, 08, 09, 0A {HEX} et 61-6F {HEX} et doit être conforme aux formats de message de la version 0, de la version 1 ou de la version 2 qui sont décrits ci-après :
 - a) Les formats de message squitter long (extended squitter) (ES) de la version 0 et les exigences connexes signalent la qualité de la surveillance par la catégorie d'incertitude de navigation (NUC), qui peut être une indication de la précision ou de l'intégrité des données de navigation utilisées par l'ADS-B. Toutefois, il n'y a rien qui indique à quoi correspond exactement la NUC (précision ou intégrité).
 - b) Les formats de message ES de la version 1 et les exigences connexes indiquent la précision et l'intégrité de la surveillance séparément par la catégorie de précision de navigation (NAC), la catégorie d'intégrité de navigation (NIC) et le niveau d'intégrité de surveillance (SIL). Les formats de message ES de la version 1 comprennent aussi des éléments pour le compte rendu enrichi de situation.
 - c) Les formats de message ES de la version 2 et les exigences connexes comprennent les dispositions de la version 1 mais améliorent le compte rendu de l'intégrité et des paramètres. Les formats ES de la version 2 indiquent séparément l'intégrité de la source de la position et l'intégrité de l'équipement de transmission ADS-B. Les formats ES de la version 2 séparent aussi le compte rendu de la

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 75 de 133 1 Janvier 2016

précision verticale de celui de la précision de la position horizontale, retirent l'intégrité verticale de l'intégrité de la position et permettent de communiquer le code mode A SSR, le décalage de l'antenne GNSS et des valeurs supplémentaires d'intégrité de la position horizontale. Les formats ES de la version 2 modifient aussi le compte rendu d'état de la cible afin d'y inclure l'altitude sélectionnée, le cap sélectionné et le réglage de pression barométrique.

- Note 1.— Les formats et les cadences d'actualisation de chaque registre sont spécifiés dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI. Les formats et les cadences d'actualisation de chaque squitter sont définis par le numéro de version du squitter long.
- Note 2.— Les formats des trois versions sont interopérables. Un récepteur de squitter long peut reconnaître et décoder les signaux de sa propre version ainsi que les formats de message des versions précédentes. Cependant, le récepteur peut, selon ses possibilités, décoder des signaux de versions supérieures.
- Note 3.— Des éléments indicatifs sur les formats des registres des transpondeurs et les sources de données figurent dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI.
 - 3.1.2.8.6.3 Types de squitter long
- 3.1.2.8.6.3.1 *Squitter de position en vol*. Le squitter long de position en vol doit utiliser le format DF = 17, avec la teneur du registre GICB 05 {HEX} insérée dans le champ ME.
- Note.— Une demande GICB (§ 3.1.2.6.11.2) contenant RR = 16, DI = 3 ou 7 et RRS = 5 entraînera une réponse contenant le message de position en vol dans son champ MB.
- 3.1.2.8.6.3.1.1 SSS, sous-champ état de surveillance du champ ME. Le transpondeur doit rendre compte de l'état de surveillance dans ce sous-champ de 2 bits (38, 39) du champ ME lorsque ce champ contient un message de position en vol.

Codage

- 0 signifie information d'état néant
- 1 signifie que le transpondeur indique un état d'alerte permanent (§ 3.1.2.6.10.1.1.1)
- 2 signifie que le transpondeur indique un état d'alerte temporaire (§ 3.1.2.6.10.1.1.2)
- 3 signifie que le transpondeur indique un état SPI (§ 3.1.2.6.10.1.3)

Les codes 1 et 2 doivent avoir préséance sur le code 3.

- 3.1.2.8.6.3.1.2 ACS, sous-champ code d'altitude du champ ME. Sous la commande du sous-champ ATS (§ 3.1.2.8.6.3.1.3), le transpondeur doit indiquer soit l'altitude obtenue d'un système de navigation, soit le code d'altitude barométrique dans ce sous-champ de 12 bits (41-52) du champ ME lorsque ce champ contient un message de position en vol. Lorsque l'altitude barométrique est indiquée, la teneur du sous-champ ACS doit être conforme aux spécifications du champ AC de 13 bits (§ 3.1.2.6.5.4) sauf pour ce qui est du bit M (bit 26), qui doit être omis.
- 3.1.2.8.6.3.1.3 Commande de l'indication ACS. L'indication des données d'altitude dans le sous-champ ACS par le transpondeur doit dépendre du sous-champ type d'altitude (ATS), comme il est spécifié au § 3.1.2.8.6.8.2. Le transpondeur doit insérer des données d'altitude barométrique dans le sous-champ ACS lorsque le sous-champ ATS a une valeur de 0. Le transpondeur ne doit pas insérer de données d'altitude barométrique dans le sous-champ ACS lorsque le sous-champ ATS a une valeur de 1.
- 3.1.2.8.6.3.2 *Squitter de position à la surface*. Le squitter long de position à la surface doit utiliser le format DF = 17, avec la teneur du registre GICB 06 {HEX} insérée dans le champ ME.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 76 de 133 1 Janvier 2016

- Note.— Une demande GICB (§ 3.1.2.6.11.2) contenant RR = 16, DI = 3 ou 7 et RRS = 6 entraînera une réponse contenant le message de position à la surface dans son champ MB.
- 3.1.2.8.6.3.3 *Squitter d'identification de l'aéronef.* Le squitter long d'identification de l'aéronef doit utiliser le format DF = 17, avec la teneur du registre GICB 08 {HEX} insérée dans le champ ME.
- Note.— Une demande GICB (§ 3.1.2.6.11.2) contenant RR = 16, DI = 3 ou 7 et RRS = 8 entraînera une réponse contenant le compte rendu message d'identification de l'aéronef dans son champ MB.
- 3.1.2.8.6.3.4 *Squitter de vitesse de vol*. Le squitter long de vitesse de vol doit utiliser le format DF = 17, avec la teneur du registre GICB 09 {HEX} insérée dans le champ ME.
- Note.— Une demande GICB (§ 3.1.2.6.11.2) contenant RR = 16, DI = 3 ou 7 et RRS = 9 entraînera une réponse contenant le compte rendu message de vitesse de vol dans son champ MB.
 - 3.1.2.8.6.3.5 Squitter d'état périodique et squitter déclenché par un événement
- 3.1.2.8.6.3.5.1 Squitter d'état périodique. Les squitters longs d'état périodique doivent utiliser le format DF = 17 pour indiquer l'état de l'aéronef et d'autres données de surveillance. Le squitter long d'état opérationnel de l'aéronef doit utiliser le contenu du registre GICB 65 {HEX} inséré dans le champ ME. Le squitter long d'état et de situation de la cible doit utiliser le contenu du registre GICB 62 {HEX} inséré dans le champ ME.
- Note 1.— Une demande GICB (§ 3.1.2.6.11.2) contenant RR = 22, DI = 3 ou 7 et RRS = 5 entraînera une réponse contenant le message d'état opérationnel de l'aéronef dans son champ MB.
- Note 2.— Une demande GICB (§ 3.1.2.6.11.2) contenant RR = 22, DI = 3 ou 7 et RRS = 2 entraînera une réponse contenant l'information sur l'état et la situation de la cible dans son champ MB.
- 3.1.2.8.6.3.5.2 *Squitter déclenché par un événement*. Le squitter long déclenché par un événement doit utiliser le format DF = 17, avec la teneur du registre GICB 0A {HEX} insérée dans le champ ME.
- Note.— Une demande GICB (§ 3.1.2.6.11.2) contenant RR = 16, DI = 3 ou 7 et RRS = 10 entraînera une réponse contenant le message déclenché par un événement dans son champ MB.
 - 3.1.2.8.6.4 Cadence d'émission des squitters longs
- 3.1.2.8.6.4.1 *Initialisation*. A l'initialisation de mise en marche, le transpondeur doit commencer à fonctionner en diffusant seulement des squitters d'acquisition (§ 3.1.2.8.5). Il doit se mettre à diffuser des squitters longs de position en vol, de position à la surface, de vitesse de vol et d'identification d'aéronef lorsque des données sont insérées dans les registres de transpondeur 05, 06, 09 et 08 {HEX}, respectivement. La détermination doit s'effectuer individuellement pour chaque type de squitter. Les cadences d'émission des squitters longs doivent être conformes aux indications des paragraphes suivants. Les squitters d'acquisition doivent être émis en plus des squitters longs à moins qu'ils n'aient été neutralisés (§ 2.1.5.4). Les squitters d'acquisition doivent toujours être émis si les squitters longs de position et les squitters longs de vitesse ne sont pas émis.
- Note 1.— Cela supprime la transmission des squitters longs dans le cas des aéronefs qui ne peuvent pas communiquer la position, la vitesse ou l'identité. Si la fourniture de données au registre du squitter de position cesse pendant 60 s, la diffusion sera interrompue jusqu'à ce que la fourniture de données reprenne. La diffusion des squitters de position en vol n'est pas interrompue si les données d'altitude barométrique sont disponibles. L'arrêt de la diffusion des autres types de squitters est décrit dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI.
- Note 2.— A la fin de la temporisation (§ 3.1.2.8.6.6), le squitter de position peut contenir un champ ME rempli de 0.
- 3.1.2.8.6.4.2 Cadence d'émission du squitter de position en vol. Les émissions de squitter de position en vol doivent s'effectuer lorsque l'aéronef est en vol (§ 3.1.2.8.6.7), à intervalles irréguliers uniformément répartis

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 77 de 133 1 Janvier 2016

dans la plage de 0,4 à 0,6 s, en utilisant une quantification du temps non supérieure à 15 ms par rapport au squitter de position en vol précédent, sauf dans les circonstances spécifiées au § 3.1.2.8.6.4.7.

- 3.1.2.8.6.4.3 Cadence d'émission du squitter de position à la surface. Les émissions de squitter de position à la surface doivent s'effectuer lorsque l'aéronef est à la surface (§ 3.1.2.8.6.7), à la cadence élevée ou faible (§ 3.1.2.8.6.9), selon celle qui est choisie. S'il s'agit de la cadence élevée, les émissions de squitter de position à la surface doivent avoir lieu à intervalles irréguliers uniformément répartis dans la plage de 0,4 à 0,6 s, en utilisant une quantification du temps non supérieure à 15 ms par rapport au squitter de position à la surface précédent (cadence élevée). S'il s'agit de la cadence faible, les émissions de squitter de position à la surface doivent avoir lieu à intervalles irréguliers uniformément répartis dans la plage de 4,8 à 5,2 s, en utilisant une quantification du temps non supérieure à 15 ms par rapport au squitter de position à la surface précédent (cadence faible). Des exceptions à ces cadences sont spécifiées au § 3.1.2.8.6.4.7.
- 3.1.2.8.6.4.4 Cadence d'émission du squitter d'identification de l'aéronef. Les émissions de squitter d'identification de l'aéronef doivent s'effectuer à des intervalles irréguliers uniformément répartis dans la plage de 4,8 à 5,2 s, en utilisant une quantification du temps non supérieure à 15 ms par rapport au squitter d'identification d'aéronef précédent lorsque l'aéronef transmet des squitters de position à la surface à cadence élevée. Lorsque l'aéronef transmet des squitters de position à la surface à cadence faible, les émissions de squitter d'identification d'aéronef doivent s'effectuer à des intervalles irréguliers uniformément répartis dans la plage de 9,8 à 10,2 s, en utilisant une quantification du temps non supérieure à 15 ms par rapport au squitter d'identification d'aéronef précédent. Des exceptions à ces cadences sont spécifiées au § 3.1.2.8.6.4.7.
- 3.1.2.8.6.4.5 Cadence d'émission du squitter de vitesse de vol. Les émissions de squitter de vitesse de vol doivent s'effectuer lorsque l'aéronef est en vol (§ 3.1.2.8.6.7), à des intervalles irréguliers répartis uniformément dans la plage de 0,4 à 0,6 s, en utilisant une quantification du temps non supérieure à 15 ms par rapport au squitter de vitesse de vol précédent, sauf dans les circonstances spécifiées au § 3.1.2.8.6.4.7.
- 3.1.2.8.6.4.6 Cadence d'émission des squitters d'état périodique et des squitters déclenchés par un événement
- 3.1.2.8.6.4.6.1 Cadence d'émission des squitters d'état périodique. Les squitters d'état périodique pris en charge par une des classes de systèmes d'émission de squitters longs mode S spécifiées au § 5.1.1.2 doivent être émis périodiquement à des intervalles définis selon la situation « à la surface » et selon que leur contenu a été modifié ou non.
- Note.— Les cadences d'émission du squitter long d'état opérationnel de l'aéronef et du squitter long d'état et de situation de la cible sont spécifiées dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI.
- 3.1.2.8.6.4.6.2 Cadence d'émission des squitters déclenchés par un événement. Les squitters déclenchés par un événement doivent être émis une fois, chaque fois que des informations sont chargées dans le registre GICB 0A {HEX}, en respectant les conditions de retardement spécifiées au § 3.1.2.8.6.4.7. La cadence maximale des émissions de squitter déclenché par un événement doit être limitée par le transpondeur à deux par seconde. Si un message inséré dans le registre d'événement ne peut pas être transmis en raison de la limite imposée sur la cadence d'émission, il doit être retenu et transmis lorsque cette limite sera supprimée. Si un nouveau message est reçu avant que la transmission ne soit autorisée, il doit remplacer le message déjà chargé dans le registre.
 - 3.1.2.8.6.4.7 *Emission retardée*. L'émission d'un squitter long doit être retardée :
 - a) si le transpondeur est dans un cycle de transaction (§ 3.1.2.4.1);
 - b) si un squitter d'acquisition ou un autre type de squitter est en cours de traitement ; ou
 - c) si une interface de suppression mutuelle est en fonctionnement.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 78 de 133 1

Janvier 2016

Le squitter retardé doit être émis dès que le transpondeur sera disponible.

- 3.1.2.8.6.5 Sélection de l'antenne pour l'émission des squitters longs. Les transpondeurs qui fonctionnent avec diversité d'antenne (§ 3.1.2.10.4) doivent transmettre les squitters longs comme suit :
 - a) en vol (§ 3.1.2.8.6.7) : alternativement sur chacune des deux antennes ;
 - b) à la surface (§ 3.1.2.8.6.7) : conformément à la commande SAS [§ 3.1.2.6.1.4.1, alinéa f)].

En l'absence de commande SAS, l'antenne utilisée par défaut doit être l'antenne supérieure.

- 3.1.2.8.6.6 Fin de la temporisation et de la diffusion du registre. Lorsque c'est nécessaire, le transpondeur doit supprimer les données des registres des squitters longs et en arrêter la diffusion afin d'éviter de transmettre des informations périmées.
- Note .— La fin de la temporisation et de la diffusion du squitter long est spécifiée dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI.
- 3.1.2.8.6.7 Détermination de la situation « en vol »/« à la surface ». Les aéronefs qui sont dotés d'un moyen automatique de détection de la situation « à la surface » doivent utiliser ce moyen pour établir s'ils doivent émettre des messages de type « en vol » ou des messages de type « à la surface ». Les aéronefs qui ne sont pas dotés de ce moyen doivent transmettre des messages de type « en vol », sauf dans les cas spécifiés dans le Tableau 3-7. Ce tableau ne doit être utilisé que pour les aéronefs capables de fournir des données de hauteur radioaltimétrique ET, au minimum, des données de vitesse anémométrique OU de vitesse sol. Autrement, les aéronefs des catégories spécifiées qui ne sont équipés que pour fournir des données de vitesse anémométrique et de vitesse sol doivent diffuser le format « à la surface » si :

la vitesse anémométrique < 50 kt ET la vitesse sol < 50 kt.

Les aéronefs avec ou sans moyen automatique de détection de la situation « à la surface » doivent utiliser les messages de position commandées par le code porté dans le champ TCS [§ 3.1.2.6.1.4.1, alinéa f)].

Après l'expiration de la commande TCS, la détermination de la situation « en vol »/« à la surface » doit se faire de nouveau à l'aide du moyen décrit ci-dessus.

- Note 1. L'emploi de cette technique peut avoir pour résultat la transmission du format de position « à la surface » lorsque la situation en vol/à la surface dans les champs CA indique « en vol ou à la surface ».
- Note 2.— Les stations sol qui utilisent des squitters longs détermineront si l'aéronef est en vol ou à la surface en se fondant sur la position, l'altitude et la vitesse sol de l'aéronef. Les aéronefs que ces stations détectent comme étant à la surface mais qui n'émettent pas de messages de position à la surface recevront via le sous-champ TCS [§ 3.1.2.6.1.4.1, alinéa f)] la commande de communiquer les formats de surface. Le retour normal aux messages de type position en vol se fera par l'envoi du sol d'une commande de communiquer des messages de type en vol. A titre de précaution en cas de perte des communications après le décollage, la commande de communiquer les messages de position à la surface expirera automatiquement.
- 3.1.2.8.6.8 *Indication de l'état des squitters*. Une demande GICB (§ 3.1.2.6.11.2) contenant RR = 16, DI = 3 ou 7 et RRS = 7 doit entraîner une réponse contenant l'indication de l'état des squitters dans son champ MB.
- 3.1.2.8.6.8.1 *TRS*, sous-champ cadence d'émission du champ MB. Le transpondeur doit utiliser ce sous-champ de 2 bits (33, 34) du champ MB pour indiquer la capacité de l'aéronef à déterminer automatiquement la cadence d'émission des squitters de surface et la cadence actuelle d'émission des squitters.

Codage

0 signifie incapacité à déterminer automatiquement la cadence d'émission des squitters de surface

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 79 de 133 1 Janvier 2016

- 1 signifie que la cadence élevée d'émission des squitters de surface a été choisie
- 2 signifie que la cadence faible d'émission des squitters de surface a été choisie
- 3 non attribué

Note 1.— La détermination de la cadence (élevée ou faible) est effectuée à bord de l'aéronef.

Note 2.— La cadence faible est utilisée lorsque l'aéronef est stationnaire, et la cadence élevée, lorsqu'il est en mouvement. Pour des renseignements détaillés sur la détermination du « mouvement » de l'aéronef, voir le format des données du registre 07₁₆ dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 80 de 133 1 Janvier 2016

Tableau 3-7. Diffusion du format « à la surface » sans moyen automatique de détermination de la situation « à la surface »

	Émetteur ADS-B de catégorie A								
Codage	Signification	Vitesse sol				Hauteur radioaltimétrique			
0	Aucune information sur la catégorie d'émetteur ADS-B	Émet toujours	Émet toujours le message de position en vol (§ 3.1.2.8.6.3.1)						
1	Léger (< 15 500 lb ou 7 031 kg)	Émet toujours	le me	ssage de position er	ı vol (§	3.1.2.8.6.3.1)			
2	Moyen 1 (15 500 à 75 000 lb ou 7 031 à 34 019 kg)	< 100 kt	< 100 kt et < 100 kt et						
3	Moyen 2 (75 000 à 300 000 lb ou 34 019 à 136 078 kg)	< 100 kt	< 100 kt et < 100 kt et			< 50 ft			
4	Aéronef à forte turbulence de sillage	< 100 kt	et	< 100 kt	et	< 50 ft			
5	Lourd (> 300 000 lb ou 136 078 kg)	< 100 kt	et	< 100 kt	et	< 50 ft			
6	À hautes performances (> 5 g accélération et > 400 kt)	< 100 kt	et	< 100 kt	et	< 50 ft			
7	Giravion	Émet toujours	Émet toujours le message de position en vol (§ 3.1.2.8.6.3.1)						
	Émetteur ADS-B de catégorie B	•							
Codage	Signification	Vitesse sol		Vitesse anémométrique		Hauteur radioaltimétrique			
0	Aucune information sur la catégorie d'émetteur ADS-B	Émet toujours	Émet toujours le message de position en vol (§ 3.1.2.8.6.3.1)						
1	Planeur	Émet toujours	Émet toujours le message de position en vol (§ 3.1.2.8.6.3.1)						
2	Aérostat	Émet toujours	le me	ssage de position er	ı vol (§	3.1.2.8.6.3.1)			
3	Parachutiste, parachutiste sportif	Émet toujours le message de position en vol (§ 3.1.2.8.6.3.1)							
4	Ultraléger, deltaplane, parapente	Émet toujours	le me	ssage de position er	ı vol (§	3.1.2.8.6.3.1)			
5	Réservé	Réservé							
6	Véhicule aérien sans pilote	Émet toujours	le me	ssage de position er	ı vol (§	3.1.2.8.6.3.1)			
7	Véhicule spatial ou transatmosphérique	< 100 kt	et	< 100 kt	et	< 50 ft			
	Émetteur ADS-B de catégorie C								
Codage	Signification								
0	Aucune information sur la catégorie d'émetteur ADS-B	Émet toujours	Émet toujours le message de position en vol (§ 3.1.2.8.6.3.1)						
1	Véhicule de surface — Véhicule d'urgence	Émet toujours	Émet toujours le message de position à la surface (§ 3.1.2.8.6.3.2)						
2	Véhicule de surface — Véhicule de service	Émet toujours	Émet toujours le message de position à la surface (§ 3.1.2.8.6.3.2)						
3	Obstacle au sol fixe ou captif	Émet toujours le message de position en vol (§ 3.1.2.8.6.3.1)							
4-7	Réservé Réservé								
	Émetteur ADS-B de catégorie D								
Codage	Signification								
0	Aucune information sur la catégorie d'émetteur ADS-B	Émet toujours le message de position en vol (§ 3.1.2.8.6.3.1)							
	Réservé	Réservé							

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 81 de 133 1 Janvier 2016

3.1.2.8.6.8.2 ATS, sous-champ type d'altitude du champ MB. Le transpondeur doit utiliser ce sous-champ de 1 bit (35) du champ MB pour indiquer le type d'altitude communiqué dans le squitter long « en vol » lorsque la réponse contient les informations chargées dans le registre 07 {HEX} du transpondeur.

Codage

- o signifie que l'altitude barométrique est indiquée dans l'ACS (§ 3.1.2.8.6.3.1.2) du registre 05 {HEX} du transpondeur
- 1 signifie que l'altitude obtenue du système de navigation est indiquée dans l'ACS (§ 3.1.2.8.6.3.1.2) du registre 05 {HEX} du transpondeur

Note.— Pour des renseignements détaillés sur le contenu des registres 05 {HEX} et 07 {HEX} du transpondeur, voir les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI.

- 3.1.2.8.6.9 Commande de la cadence d'émission des squitters de surface. La cadence d'émission des squitters de surface doit être déterminée de la façon suivante :
 - a) la teneur du sous-champ TRS doit être lue une fois par seconde. Si la valeur de TRS est 0 ou 1, le transpondeur doit émettre les squitters de surface à la cadence élevée. Si la valeur de TRS est 2, le transpondeur doit émettre les squitters de surface à la cadence faible ;
 - b) la cadence d'émission des squitters commandée via le sous-champ RCS [§ 3.1.2.6.1.4.1, alinéa f)] doit avoir préséance sur celle qui est déterminée par le sous-champ TRS. Un code RCS de 1 doit avoir pour effet de régler le transpondeur à la cadence élevée pour une période de 60 s. Un code RCS de 2 doit avoir pour effet de régler le transpondeur à la cadence faible pour une période de 60 s. Ces commandes peuvent être régénérées pour une nouvelle période de 60 s avant l'expiration de la période en cours ;
 - c) à l'expiration de la période et en l'absence d'un code RCS de 1 ou de 2, la cadence doit être de nouveau déterminée par le sous-champ TRS.
- 3.1.2.8.6.10 Codage de la latitude/longitude à l'aide de la compression des comptes rendus de position (CPR). Le squitter long mode S doit utiliser la compression des comptes rendus de position (CPR) pour coder efficacement la latitude et la longitude dans les messages.
- Note.— La méthode utilisée pour coder et décoder les CPR est spécifiée dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI.
- 3.1.2.8.6.11 *Insertion de données*. Lorsque le transpondeur détermine qu'il est temps d'émettre un squitter de position « en vol », il doit insérer (à moins d'en être empêché par le sous-champ ATS, § 3.1.2.8.6.8.2) la valeur actuelle de l'altitude barométrique et de l'état de surveillance dans les champs appropriés du registre 05 {HEX}. Le contenu de ce registre doit ensuite être inséré dans le champ ME de DF = 17 et émis.
- Note.— Ce type d'insertion permet de s'assurer 1) que le squitter contient les données d'altitude et d'état de surveillance les plus récentes et 2) que la lecture du registre 05 {HEX} par le sol produira exactement la même information que celle du champ AC d'une réponse de surveillance mode S.
 - 3.1.2.8.7 SQUITTER LONG COMPLEMENTAIRE, FORMAT DESCENDANT 18

10010	CF :3			PI :24
-------	-------	--	--	--------

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 82 de 133

Janvier 2016

- Note 1.— Ce format prend en charge la diffusion de messages ADS-B sur squitter long par des dispositifs qui ne sont pas des transpondeurs (extended squitter/non-transponder) (ES/NT), c'est-à-dire qui ne font pas partie de transpondeurs mode S. L'emploi d'un format distinct a pour but d'indiquer de façon claire que le message ne provient pas d'un transpondeur et ainsi d'empêcher que des stations ACAS II ou des stations sol utilisant des squitters longs ne cherchent à interroger le dispositif qui l'a émis.
- Note 2.— Ce format sert aussi à la diffusion sol de services associés à l'ADS-B, tels que le service d'information sur le trafic en mode diffusion (TIS-B).
 - Note 3.— Le format de la transmission DF=18 est défini par la valeur du champ CF.
- 3.1.2.8.7.1 *Format ES complémentaire*. Le format utilisé pour un squitter long complémentaire doit être un format descendant de 112 bits (DF = 18) contenant les champs suivants :

Char	пр	Référence (§)
DF	format descendant	3.1.2.3.2.1.2
CF	champ de commande	3.1.2.8.7.2
PΙ	parité/identificateur d'interrogateur	3.1.2.3.2.1.4

Le champ PI contiendra le code II égal à 0.

3.1.2.8.7.2 *CF—Champ de commande (Control field)*. Ce champ descendant de 3 bits (6-8) du format DF = 18 est utilisé pour définir le format de la transmission à 112 bits, comme suit :

Code

- 0 = ADS-B pour les dispositifs ES/NT qui indiquent l'adresse OACI à 24 bits dans le champ AA (§ 3.1.2.8.7.3)
- 1 = Réservé à l'ADS-B, pour les dispositifs ES/NT qui utilisent d'autres techniques d'adressage dans le champ AA (§ 3.1.2.8.7.3)
- 2 = Message TIS-B format fin
- 3 = Message TIS-B format brut
- 4 = Réservé aux messages de gestion TIS-B
- 5 = Messages TIS-B relayant des messages ADS-B qui utilisent d'autres techniques d'adressage dans le champ AA
- 6 = Rediffusion ADS-B au moyen des mêmes codes de type et formats de message que ceux qui ont été définis pour les messages ADS-B DF = 17
- 7 = Réservé
- Note 1.— L'Autorité d'aviation civile pourra attribuer des adresses aux dispositifs ES/NT en plus des adresses à 24 bits attribuées par l'OACI (RAS 10, Volume III, Partie 1, Chapitre 9) afin d'augmenter le nombre d'adresses à 24 bits disponibles.
 - Note 2.— Ces adresses à 24 bits non-OACI ne sont pas destinées à une utilisation internationale.
 - 3.1.2.8.7.3 ADS-B pour dispositifs à squitter long qui ne sont pas des transpondeurs (ES/NT)

|--|

3.1.2.8.7.3.1 *Format ES/NT*. Le format utilisé pour un squitter long émis par un dispositif qui n'est pas un transpondeur doit être un format descendant de 112 bits (DF = 18) contenant les champs suivants :

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition :

Date

Page 83 de 133

Janvier 2016

Cha	тр	Référence (§)
DF	format descendant	3.1.2.3.2.1.2
CF	champ de commande= 0	3.1.2.8.7.2
AA	adresse annoncée	3.1.2.5.2.2.2
ME	message sur squitter long	3.1.2.8.6.2
PΙ	parité/identificateur d'interrogateur	3.1.2.3.2.1.4

Le champ PI contiendra le code II égal à 0.

- 3.1.2.8.7.3.2 Types de squitter ES/NT
- 3.1.2.8.7.3.2.1 *Squitter de position en vol*. Le squitter ES/NT de position en vol doit utiliser le format DF = 18, avec le format du registre 05 {HEX} défini au § 3.1.2.8.6.2 inséré dans le champ ME.
- 3.1.2.8.7.3.2.2 *Squitter de position à la surface*. Le squitter ES/NT de position à la surface doit utiliser le format DF = 18, avec le format du registre 06 {HEX} défini au § 3.1.2.8.6.2 inséré dans le champ ME.
- 3.1.2.8.7.3.2.3 *Squitter d'identification de l'aéronef.* Le squitter ES/NT d'identification de l'aéronef doit utiliser le format DF = 18, avec le format du registre 08 {HEX} défini au § 3.1.2.8.6.2 inséré dans le champ ME.
- 3.1.2.8.7.3.2.4 *Squitter de vitesse de vol.* Le squitter ES/NT de vitesse de vol doit utiliser le format DF = 18, avec le format du registre 09 {HEX} défini au § 3.1.2.8.6.2 inséré dans le champ ME.
 - 3.1.2.8.7.3.2.5 Squitter d'état périodique et squitter déclenché par un événement
- 3.1.2.8.7.3.2.5.1 Squitter d'état périodique. Les squitters longs d'état périodique doivent utiliser le format DF = 18 pour indiquer l'état de l'aéronef et d'autres données de surveillance. Le squitter long d'état opérationnel de l'aéronef doit utiliser le format du registre GICB 65 {HEX} défini au § 3.1.2.8.6.4.6.1 inséré dans le champ ME. Le squitter long d'état et de situation de la cible doit utiliser le format du registre GICB 62 {HEX} défini au § 3.1.2.8.6.4.6.1 inséré dans le champ ME.
- 3.1.2.8.7.3.2.5.2 Squitter déclenché par un événement. Le squitter ES/NT déclenché par un événement doit utiliser le format DF = 18, avec le format du registre 0A {HEX} défini au § 3.1.2.8.6.2 inséré dans le champ ME.
 - 3.1.2.8.7.3.3 Cadence d'émission des squitters ES/NT
- 3.1.2.8.7.3.3.1 *Initialisation*. A l'initialisation de mise en marche, le dispositif non-transpondeur doit commencer à fonctionner selon un mode dans lequel il ne diffuse pas de squitters. Il doit se mettre à diffuser des squitters ES/NT de position en vol, de position à la surface, de vitesse de vol et d'identification d'aéronef quand des données sont prêtes à être introduites dans le champ ME de ces squitters. Ce moment doit être déterminé séparément pour chaque type de squitter. Les cadences d'émission des squitters ES/NT doivent être conformes aux indications des § 3.1.2.8.6.4.2 à 3.1.2.8.6.4.6.
- Note 1.— Cela supprime la transmission de squitters longs par les aéronefs qui ne sont pas capables de communiquer la position, la vitesse ou l'identité. Si la fourniture de données au registre du squitter de position cesse pendant 60 s, la diffusion sera interrompue jusqu'à ce que la fourniture de données reprenne, sauf dans le cas d'un dispositif ES/NT fonctionnant à la surface (comme il est spécifié dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI. La diffusion des squitters de position en vol n'est pas interrompue si les données d'altitude barométrique sont disponibles. L'arrêt de la diffusion des autres types de squitters est décrit dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871).
- Note 2.— A la fin de la temporisation (§ 3.1.2.8.7.6), ce type de squitter pourra contenir un champ ME rempli de 0.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 84 de 133 1 Janvier 2016

3.1.2.8.7.3.3.2 *Emission retardée*. L'émission d'un squitter ES/NT doit être retardée si le dispositif non-transpondeur est occupé à émettre un squitter d'un des autres types.

- 3.1.2.8.7.3.3.2.1 Le squitter retardé doit être émis dès que le dispositif non-transpondeur est disponible.
- 3.1.2.8.7.3.3.3 Sélection de l'antenne pour l'émission des squitters ES/NT. Les dispositifs non-transpondeurs qui fonctionnent avec diversité d'antenne (§ 3.1.2.10.4) doivent transmettre les squitters ES/NT comme suit :
 - a) en vol (§ 3.1.2.8.6.7) : alternativement sur chacune des deux antennes ;
 - b) à la surface (§ 3.1.2.8.6.7) : à l'aide de l'antenne supérieure.
- 3.1.2.8.7.3.3.4 Fin de la temporisation et de la diffusion du registre. Lorsque c'est nécessaire, le dispositif non-transpondeur doit vider les champs des messages et arrêter la diffusion des messages de squitter long afin d'éviter de transmettre des informations périmées.
- Note La fin de la temporisation et de la diffusion du squitter long est spécifiée dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI.
- 3.1.2.8.7.3.3.5 Détermination de la situation « en vol »/« à la surface ». Les aéronefs qui sont dotés d'un moyen automatique de détection de la situation « à la surface » doivent utiliser ce moyen pour établir s'ils doivent émettre des messages de type « en vol » ou des messages de type « à la surface », sauf comme il est spécifié au § 3.1.2.6.10.3.1. Les aéronefs qui ne sont pas dotés de ce moyen doivent transmettre des messages de type « en vol ».
- 3.1.2.8.7.3.3.6 Commande de la cadence d'émission des squitters de surface. Le mouvement de l'aéronef doit être déterminé une fois par seconde. La cadence d'émission des squitters de surface doit être fixée en fonction des résultats de cette détermination.
- Note.— L'algorithme de détermination du mouvement de l'aéronef est spécifié dans la définition du registre 07₁₆, dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI.
 - 3.1.2.8.7.4 Utilisation des squitters longs par d'autres systèmes de surveillance
- 3.1.2.8.7.4.1 Contrôle du système de surveillance de surface. Lorsqu'un système de surveillance de surface utilise DF = 18 dans le cadre de la fonction de surveillance, il n'emploie pas les formats qui ont été attribués à la surveillance des aéronefs, des véhicules et/ou des obstacles.
- Note 1.— Les formats attribués à la surveillance des aéronefs, des véhicules et/ou des obstacles sont spécifiés dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI.
- Note 2.— La transmission d'un format de message utilisé pour véhiculer la position, la vitesse, l'identification, l'état, etc., peut avoir pour résultat d'amorcer et de maintenir des fausses pistes dans d'autres récepteurs de squitters longs 1090. Il est possible que l'emploi de ces messages dans ce but soit interdit à l'avenir.
- 3.1.2.8.7.4.2 Etat du système de surveillance de surface. Le message d'état du système de surveillance de surface (code de type = 24) est le seul message utilisé pour indiquer l'état ou la synchronisation des systèmes de surveillance de surface.
- Note.— Le message d'état des systèmes de surveillance de surface est spécifié dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI. Ce message ne sera utilisé que par le système de surveillance de surface qui le produit et ne sera pas pris en compte par les autres systèmes de surface.
 - 3.1.2.8.8 SQUITTER LONG POUR APPLICATIONS MILITAIRES, FORMAT DESCENDANT 19

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 85 de 133 1

Janvier 2016

|--|

Note.— Ce format prend en charge la diffusion de messages ADS-B sur squitter long utilisés dans le cadre d'applications militaires. L'emploi d'un format différent permet de distinguer ces squitters longs de l'ensemble normalisé de messages ADS-B utilisant DF = 17 ou 18.

3.1.2.8.8.1 *Format militaire*. Le format utilisé pour DF = 19 doit être un format descendant de 112 bits contenant les champs suivants :

Champ Référence (§)

DF format descendant 3.1.2.3.2.1.2

AF champ de commande 3.1.2.8.8.2

3.1.2.8.8.2 *AF* —*Champ d'application (Application field)*. Ce champ descendant de 3 bits (6-8) du format DF = 19 doit être utilisé pour définir le format de la transmission à 112 bits.

Codes 0 à 7 = Réservés

3.1.2.8.9 CADENCE MAXIMALE D'EMISSION DES SQUITTERS LONGS

- 3.1.2.8.9.1 Le nombre total de squitters longs pleine puissance (DF = 17, 18 et 19) émis chaque seconde par quelque installation que ce soit qui utilise des squitters longs ne doit pas dépasser:
 - a) 6,2 messages par seconde en moyenne sur une période de 60 s pour l'exploitation nominale des aéronefs sans situation d'urgence ni avis de résolution ACAS, sans toutefois dépasser 11 messages par période de 1 s ; ou
 - b) 7,4 messages par seconde en moyenne sur une période de 60 secondes en situation d'urgence et/ou dans le cadre d'un avis de résolution ACAS, sans toutefois dépasser 11 messages par période de 1 s.
- 3.1.2.8.9.2 Dans les installations capables d'émettre des squitters DF = 19 et conformément au § 3.1.2.8.8, les squitters DF = 19 de faible puissance doivent être émis à une cadence maximale de 40 squitters DF = 19 par seconde, et de 30 squitters DF = 19 par seconde en moyenne au cours d'une période de 10 s, à condition que la valeur totale maximale du produit puissance*cadence d'émission des squitters pour la somme des squitters DF = 17 pleine puissance, des squitters DF = 18 pleine puissance, des squitters DF = 19 faible puissance, se maintienne à une valeur égale ou inférieure à un niveau équivalant à la somme des puissances de 6,2 squitters pleine puissance par seconde en moyenne au cours d'une période de 10 s.
- 3.1.2.8.9.3 Les autorités militaires compétentes doivent veiller à ce que l'utilisation des squitters DF = 19 à faible puissance et à cadence élevée (§ 3.1.2.8.9.2) soit conforme aux spécifications suivantes :
 - a) elle se limite aux aéronefs leaders d'une formation ou d'un élément exécutant un vol en formation et transmettant des messages aux ailiers ou à d'autres leaders au moyen d'une antenne directive avec une ouverture angulaire ne dépassant pas 90°;
 - b) le type d'information contenu dans le message DF = 19 est le même type d'information que celui du message DF = 17, c'est-à-dire une information visant uniquement la sécurité du vol.

Note.— La fonction de squitters à faible puissance et à cadence élevée est destinée à être utilisée de façon limitée par les aéronefs d'Etat en coordination avec les organismes de réglementation appropriés.

3.1.2.8.9.4 Toutes les interrogations UF = 19 provenant d'aéronefs doivent être régies par les dispositions relatives à la limitation du brouillage (§ 4.3.2.2.2.2).

3.1.2.9 PROTOCOLE D'IDENTIFICATION D'AERONEF

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 86 de 133 1 Janvier 2016

- 3.1.2.9.1 Compte rendu d'identification d'aéronef. Une demande de Comm-B déclenché au sol (§ 3.1.2.6.11.2) contenant RR = 18 et DI \neq 7, ou RR = 18, DI = 7 et RRS = 0 doit entraîner une réponse contenant l'identification d'aéronef dans son champ MB.
- 3.1.2.9.1.1 AIS Sous-champ identification d'aéronef dans MB. Le transpondeur doit indiquer l'identification d'aéronef dans le sous-champ AIS de 48 bits (41-88) de MB. L'identification transmise doit être celle qui figure dans le plan de vol. S'il n'y a pas de plan de vol, l'immatriculation de l'aéronef doit être indiquée dans ce sous-champ.
- Note.— Si l'on utilise l'immatriculation de l'aéronef, elle est classée dans la catégorie des « données directes fixes » (§ 3.1.2.10.5.1.1). Si l'on utilise un autre type d'identification d'aéronef, il rentre dans la catégorie des « données directes variables » (§ 3.1.2.10.5.1.3).
 - 3.1.2.9.1.2 Codage du sous-champ AIS. Le sous-champ AIS doit être codé comme suit :

33	41	47	53	59	65	71	77	83
BDS	Car.1	Car.2	Car.3	Car.4	Car.5	Car.6	Car.7	Car.8
40) 46	5 52	58	64	. 70) 76	82	88

Note.— Le codage de l'identification d'aéronef prévoit un maximum de huit caractères.

Le code BDS utilisé pour le message d'identification d'aéronef doit être BDS1 = 2 (33-36) et BDS2 = 0 (37-40).

Chaque caractère doit être codé en tant que sous-ensemble à 6 bits de l'Alphabet international n° 5 (IA-5), comme le montre le Tableau 3-8. La transmission du caractère codé doit commencer par le bit de poids fort (b6) et celle de l'identification d'aéronef par le caractère d'extrême gauche. Les caractères doivent être codés consécutivement sans ESPACE. Tous les espaces pour caractère non utilisés à la fin du sous-champ doivent contenir un ESPACE.

- 3.1.2.9.1.3 Compte rendu de capacité d'identification d'aéronef. Les transpondeurs qui répondent à une demande d'identification d'aéronef déclenchée au sol doivent indiquer ces possibilités dans le compte rendu de possibilités de liaison de données (§ 3.1.2.6.10.2.2.2) en positionnant à 1 le bit 33 du sous-champ MB.
- 3.1.2.9.1.4 Changement d'identification d'aéronef. Si l'identification d'aéronef indiquée dans le souschamp AIS est changée en vol, le transpondeur doit envoyer au sol la nouvelle identification en utilisant le protocole de message diffusé Comm-B du § 3.1.2.6.11.4 pour BDS1 = 2 (33-36) et BDS2 = 0 (37-40). Le transpondeur doit déclencher, générer et annoncer l'identification d'aéronef révisée même en cas de perte de l'interface fournissant l'identification de vol. Le transpondeur doit veiller à ce que le code BDS soit positionné pour le compte rendu d'identification d'aéronef dans tous les cas, y compris la perte de l'interface ; dans ce dernier cas, les bits 41-88 ne contiendront que des 0.
- Note.— Le positionnement du code BDS par le transpondeur garantit qu'un compte rendu diffusé indiquant le changement d'identification d'aéronef contiendra le code BDS pour tous les cas de défaillance de l'identification de vol (p. ex. perte de l'interface fournissant l'identification de vol).

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 87 de 133 1 Janvier 2016

Tableau 3-8. Codage des caractères pour la transmission de l'identification d'aéronef sur liaison de données

(Sous-ensemble d'IA-5 — voir § 3.1.2.9.1.2)

				<i>b</i> ₆	0	0	1	1
				b ₅	0	1	0	1
<i>b</i> ₄	b 3	b ₂	b 1					
0	0	0	0			Р	SP	0
0	0	0	1		Α	Q		1
0	0	1	0		В	R		2
0	0	1	1		С	S		3
0	1	0	0		D	T		4
0	1	0	1		Е	U		5
0	1	1	0		F	V		6
0	1	1	1		G	W		7
1	0	0	0		Н	Χ		8
1	0	0	1			Υ		9
1	0	1	0		J	Z		
1	0	1	1		K			
1	1	0	0		L			
1	1	0	1		М			
1	1	1	0		N			
1	1	1	1		0			

3.1.2.10 CARACTERISTIQUES ESSENTIELLES DE SYSTEME DU TRANSPONDEUR SSR MODE S

- 3.1.2.10.1 Sensibilité et gamme dynamique du transpondeur. La sensibilité d'un transpondeur doit être définie en fonction d'un niveau d'entrée donné du signal d'interrogation et d'un pourcentage donné de réponses correspondantes. On ne doit tenir compte que des réponses correctes ayant la structure binaire voulue pour l'interrogation reçue. Soit une interrogation qui appelle une réponse selon le § 3.1.2.4 ; le niveau minimal de déclenchement (MTL) doit être défini comme étant le niveau minimal de puissance d'entrée pour un rapport réponse/interrogation de 90 %. Le MTL doit être de –74 dBm ± 3 dB pour les interrogations mode S (interrogations utilisant P₆) et tel qu'il est défini au § 3.1.1.7.5.1, alinéa b) pour les modes A et C et pour les interrogations intermodes. Le rapport réponse/interrogation d'un transpondeur mode S doit être :
 - a) de 99 % au minimum pour les niveaux d'entrée de signal compris entre MTL + 3 dB et -21 dBm;
 - b) de 10 % au maximum pour les niveaux d'entrée de signal inférieurs à -81 dBm.

Note.— La sensibilité et la puissance des transpondeurs sont définies dans la présente section en fonction du niveau de signal aux bornes de l'antenne. Cela donne au constructeur la liberté de concevoir l'installation en optimisant la longueur des câbles et le modèle d'émetteur-récepteur, sans empêcher des composants du récepteur ou de l'émetteur de faire partie intégrante du sous-ensemble antenne.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 88 de 133 1 Janvier 2016

3.1.2.10.1.1 Taux de réponse en présence de brouillage

3.1.2.10.1.1.1 Taux de réponse en présence d'une impulsion brouilleuse. Dans le cas d'une interrogation mode S qui exige une réponse (§ 3.1.2.4), le taux de réponse du transpondeur doit être d'au moins 95 % en présence d'une impulsion d'interrogation brouilleuse modes A/C si le niveau de cette impulsion brouilleuse est inférieur d'au moins 6 dB à celui du signal pour des niveaux d'entrée mode S compris entre -68 dBm et -21 dBm et si l'impulsion brouilleuse chevauche l'impulsion P_6 de l'interrogation mode S à un moment quelconque après l'inversion de phase synchro.

Dans les mêmes conditions, le taux de réponse doit être d'au moins 50 % si le niveau de l'impulsion brouilleuse est inférieur de 3 dB ou plus à celui du signal.

- 3.1.2.10.1.1.2 Taux de réponse en présence de brouillage par une paire d'impulsions. Dans le cas d'une interrogation qui exige une réponse (§ 3.1.2.4), le taux de réponse du transpondeur doit être d'au moins 90 % en présence d'une paire d'impulsions brouilleuses P_1 - P_2 si le niveau de cette paire d'impulsions est inférieur d'au moins 9 dB à celui du signal pour des niveaux d'entrée compris entre -68 dBm et -21 dBm et si l'impulsion P_1 de la paire brouilleuse ne se produit pas avant l'impulsion P_1 du signal mode S.
- 3.1.2.10.1.1.3 Taux de réponse en présence de brouillage asynchrone de faible niveau. Pour tous les signaux reçus compris entre –65 dBm et –21 dBm, dans le cas d'une interrogation mode S qui exige une réponse selon le § 3.1.2.4 et pour autant qu'il n'y ait pas d'état de verrouillage, le taux de réponse correcte d'un transpondeur doit être d'au moins 95 % en présence de brouillage asynchrone. On entend par brouillage asynchrone une impulsion d'interrogation modes A/C isolée qui se produit à toutes les fréquences de répétition jusqu'à 10 000 Hz, à un niveau inférieur d'au moins 12 dB à celui du signal mode S.
- Note.— Ces impulsions peuvent se combiner avec les impulsions P_1 et P_2 de l'interrogation mode S pour former une interrogation valide du type « appel général » modes A/C seulement. Le transpondeur mode S ne répond pas aux interrogations « appel général » modes A/C seulement. Une impulsion précédente peut également se combiner à l'impulsion P_2 de l'interrogation mode S pour former une interrogation valide mode S ou mode S. Toutefois, la paire d'impulsions S0 de décodage mode S1.2.4.1.1.1). Le processus de décodage mode S2 est indépendant du processus de décodage mode S3.1.2.4.1.1.1) mode S4 est acceptée.
- 3.1.2.10.1.1.4 Taux de réponse en présence de brouillage dans la bande par une onde entretenue de faible niveau. En présence de brouillage par une onde entretenue non cohérente à une fréquence de 1 030 \pm 0,2 MHz et à un niveau de signal de 20 dB ou plus au-dessous du niveau désiré de signal d'interrogation modes A/C ou mode S, le transpondeur doit répondre correctement à au moins 90 % des interrogations.

3.1.2.10.1.1.5 Réponse parasite

- 3.1.2.10.1.1.5.1 Le niveau des réponses à des signaux qui ne sont pas compris dans la bande passante du récepteur peut se situer à 60 dB au moins au-dessous du niveau normal de sensibilité.
- 3.1.2.10.1.1.5.2 Pour les conceptions de transpondeur initialement certifiées le 1^{er} janvier 2011 ou après, le taux de réponses modes A/C parasites résultant des interrogations mode S de faible niveau ne doit pas dépasser:
 - a) une moyenne de 1 % dans la plage du signal d'interrogation d'entrée comprise entre −81 dBm et le MTL mode S :
 - b) un maximum de 3 % à un niveau quelconque dans la plage du signal d'interrogation d'entrée comprise entre -81 dBm et le MTL mode S.

Note 1.— La non-détection d'une interrogation mode S de faible niveau peut aussi avoir pour résultat le décodage par le transpondeur d'une interrogation « appel général » modes A/C/S à trois impulsions. Dans ce cas, le transpondeur répond par une réponse à un appel général mode S (DF = 11). La spécification ci-dessus

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 89 de 133 1 Janvier 2016

restreint aussi ces réponses DF = 11 puisqu'elle limite la probabilité de ne pas détecter correctement l'interrogation mode S.

- Note 2.— Le Manuel de navigabilité (Doc 9760) contient de plus amples renseignements sur la délivrance d'un certificat de type pour un aéronef et d'une approbation de conception distincte.
- 3.1.2.10.2 *Puissance de crête des impulsions de transpondeur*. La puissance de crête de chaque impulsion d'une réponse ne doit pas être :
 - a) inférieure à 18,5 dBW pour les aéronefs qui ne peuvent pas voler à une altitude supérieure à 4 570 m (15 000 ft);
 - b) inférieure à 21,0 dBW pour les aéronefs pouvant voler au-dessus de 4 570 m (15 000 ft);
 - c) inférieure à 21,0 dBW pour les aéronefs dont la vitesse maximale de croisière est supérieure à 324 km/h (175 kt);
 - d) supérieure à 27,0 dBW.
- 3.1.2.10.2.1 Puissance des transpondeurs inactifs. Lorsque le transpondeur est inactif, la puissance de crête des impulsions à la fréquence 1 090 ± 3 MHz ne doit pas dépasser –50 dBm. On entend par état inactif d'un transpondeur la totalité de la période qui s'écoule entre deux transmissions, moins les périodes de transition de 10 µs qui précèdent la première impulsion et suivent la dernière impulsion de la transmission.
- Note.— La puissance des transpondeurs inactifs est ainsi réduite pour garantir que, lorsqu'il se trouve à une distance de 185 m (0,1 NM) d'un interrogateur modes A/C ou mode S, un aéronef ne cause aucun brouillage à cette installation. Dans certaines applications du mode S, par exemple les systèmes anticollision embarqués, où un émetteur-récepteur 1 090 MHz se trouve à bord du même aéronef, il y aura peut-être lieu de réduire davantage la puissance du transpondeur inactif.
- 3.1.2.10.2.2 Rayonnement des émissions non essentielles. Le rayonnement en ondes entretenues peut ne pas dépasser 70 dB au-dessous de 1 W.
 - 3.1.2.10.3 CARACTERISTIQUES SPECIALES
 - 3.1.2.10.3.1 Suppression des lobes secondaires mode S

Note.— La suppression des lobes secondaires pour les formats mode S se produit lorsqu'une impulsion P_5 recouvre l'emplacement de l'inversion de phase synchro de P_6 , de sorte que le transpondeur ne reconnaît pas l'interrogation (§ 3.1.2.4.1.1.3).

Dans le cas d'une interrogation mode S qui exige une réponse, le transpondeur doit avoir :

- a) à tous les niveaux de signal compris entre MTL +3 dB et -21 dBm, un taux de réponse inférieur à 10 % si l'amplitude reçue de P_5 dépasse d'au moins 3 dB l'amplitude reçue de P_6 ;
- b) à tous les niveaux de signal compris entre MTL +3 dB et –21 dBm, un taux de réponse d'au moins 99 % si l'amplitude reçue de P₆ dépasse d'au moins 12 dB l'amplitude reçue de P₅.
- 3.1.2.10.3.2 *Temps mort mode S*. Le temps mort est défini comme étant l'intervalle de temps compris entre la fin d'une réponse et le moment où la sensibilité du transpondeur a repris une valeur comprise entre MTL et MTL + 3 dB. Les transpondeurs mode S doivent avoir un temps mort ne dépassant pas 125 µs.
- 3.1.2.10.3.3 *Désensibilisation du récepteur mode S*. A la réception d'une impulsion d'une durée supérieure à 0,7 µs, le récepteur du transpondeur doit être désensibilisé conformément au § 3.1.1.7.7.1.
- 3.1.2.10.3.3.1 Rétablissement après désensibilisation. Le rétablissement après désensibilisation doit commencer au bord arrière de chaque impulsion d'un signal reçu et doit se faire au taux prescrit au § 3.1.1.7.7.2, dans la mesure où il n'y a ni réponse ni transfert de données à la suite du signal reçu.

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 90 de 133 1 Janvier 2016

- 3.1.2.10.3.4 Rétablissement après une interrogation mode S qui ne déclenche pas de réponse
- 3.1.2.10.3.4.1 Rétablissement après une interrogation mode S simple. Dans tous les transpondeurs mode S, la sensibilité doit se rétablir (à moins de 3 dB du seuil de déclenchement) 45 µs au plus tard après réception de l'inversion de phase synchro, à la suite d'une interrogation mode S qui n'est pas acceptée (§ 3.1.2.4.1.2) ou qui est acceptée mais n'appelle pas de réponse.
- 3.1.2.10.3.4.2 *Rétablissement après une interrogation Comm-C mode S*. A la suite de l'acceptation d'une interrogation Comm-C qui n'appelle pas de réponse, la sensibilité d'un transpondeur mode S avec possibilités Comm-C doit se rétablir (à moins de 3 dB du seuil de déclenchement) 45 µs au plus tard après réception de l'inversion de phase synchro.
- 3.1.2.10.3.5 Réponses mode S non désirées. Les transpondeurs mode S ne doivent pas émettre de réponses mode S non désirées plus d'une fois toutes les 10 s. L'installation à bord d'un aéronef doit être réalisée de telle manière que cette spécification soit respectée lorsque tous les équipements brouilleurs possibles installés à bord du même aéronef fonctionnent à leur niveau de brouillage maximal.
- 3.1.2.10.3.5.1 Réponses mode S non désirées en présence de brouillage dans la bande par une onde entretenue de faible niveau. En présence de brouillage par une onde entretenue non cohérente à une fréquence de 1 030 \pm 0,2 MHz et à un niveau de signal de -60 dBm ou moins, et en l'absence de signaux d'interrogation valides, les transpondeurs mode S ne doivent pas produire de réponses mode S non désirées plus d'une fois toutes les 10 s.
 - 3.1.2.10.3.6 Limitation des taux de réponse
- 3.1.2.10.3.6.1 *Limitation des taux de réponse mode S*. Aucune limitation des taux de réponse n'est exigée pour les formats mode S des transpondeurs. Si une telle limitation est prévue pour la protection des circuits, elle doit permettre les taux minimaux prescrits aux § 3.1.2.10.3.7.2 et 3.1.2.10.3.7.3.
- 3.1.2.10.3.6.2 *Limitation des taux de réponse modes A et C.* La limitation des taux de réponse pour les modes A et C doit être assurée conformément au § 3.1.1.7.9.1. La réduction de sensibilité prescrite (§ 3.1.1.7.9.2) ne doit pas nuire aux performances mode S du transpondeur.
 - 3.1.2.10.3.7 Taux minimaux de réponse, modes A, C et S
- 3.1.2.10.3.7.1 Tous les taux de réponse spécifiés au § 3.1.2.10.3.7 doivent s'ajouter aux transmissions de squitters que le transpondeur est tenu d'effectuer.
- 3.1.2.10.3.7.2 *Taux minimaux de réponse, modes A et C.* Pour les modes A et C, les taux minimaux de réponse doivent être conformes au § 3.1.1.7.9.
- 3.1.2.10.3.7.3 *Taux minimaux de réponse, mode S*. Les transpondeurs qui ne peuvent transmettre que des réponses mode S courtes doivent être capables de produire ces réponses aux taux suivants :
 - 50 réponses mode S dans un intervalle de 1 s
 - 18 réponses mode S dans un intervalle de 100 ms
 - 8 réponses mode S dans un intervalle de 25 ms
 - 4 réponses mode S dans un intervalle de 1,6 ms.

Outre les transmissions d'ELM descendants, un transpondeur de niveau 2, 3 ou 4 doit être capable de produire des réponses longues dans les proportions minimales suivantes :

- 16 réponses mode S sur 50 dans un intervalle de 1 s
- 6 réponses mode S sur 18 dans un intervalle de 100 ms
- 4 réponses mode S sur 8 dans un intervalle de 25 ms
- 2 réponses mode S sur 4 dans un intervalle de 1,6 ms.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 91 de 133 1 Janvier 2016

Les transpondeurs utilisés avec l'ACAS doivent être capables de produire des réponses longues dans les proportions minimales suivantes :

- 60 réponses mode S dans un intervalle de 1 s
- 6 réponses mode S sur 18 dans un intervalle de 100 ms
- 4 réponses mode S sur 8 dans un intervalle de 25 ms
- 2 réponses mode S sur 4 dans un intervalle de 1,6 ms

Outre les transmissions d'ELM descendants, un transpondeur de niveau 5 doit être capable de produire des réponses longues dans les proportions minimales suivantes :

- 24 réponses mode S sur 50 dans un intervalle de 1 s
- 9 réponses mode S sur 18 dans un intervalle de 100 ms
- 6 réponses mode S sur 8 dans un intervalle de 25 ms
- 2 réponses mode S sur 4 dans un intervalle de 1,6 ms.

3.1.2.10.3.7.4 Valeurs de crête des taux minimaux de réponse ELM mode S

Note 1.— Lorsqu'un ELM descendant est initialisé (§ 3.1.2.7.7.1), le transpondeur mode S annonce la longueur (en segments) du message en attente. Le transpondeur doit être capable de transmettre ce nombre de segments, plus une marge supplémentaire pour rattraper les réponses manquées, pendant le temps d'éclairement de la cible par le faisceau de l'interrogateur au sol.

Au moins une fois chaque seconde, les transpondeurs mode S équipés pour envoyer des ELM descendants doivent être capables, dans un intervalle de 25 ms, de transmettre au minimum 25 % de segments en plus du nombre annoncé dans l'initialisation (§ 3.1.2.7.7.1). La longueur minimale des ELM descendants que doivent pouvoir transmettre les transpondeurs de niveaux 4 et 5 est celle qui est prescrite au § 3.1.2.10.5.2.2.2.

Note 2.— Les transpondeurs capables de traiter les ELM descendants de longueur maximale (16 segments) doivent donc être capables de transmettre 20 réponses longues dans les conditions ci-dessus. Il peut exister des transpondeurs de niveau 4 qui ne peuvent pas traiter les messages de longueur maximale. Ces transpondeurs ne peuvent pas initialiser une longueur de message qui dépasse leurs possibilités. Par exemple, un transpondeur qui peut transmettre au maximum 10 réponses longues dans les conditions ci-dessus ne doit jamais annoncer un message de plus de 8 segments.

3.1.2.10.3.8 Retard et instabilité des réponses

Note.— Lorsqu'une interrogation exigeant une réponse a été acceptée, la transmission de cette réponse commence après un délai fixe nécessaire à l'exécution des protocoles. Les valeurs assignées à ce délai sont différentes pour les réponses modes A et C, mode S et « appel général » modes A/C/S.

- 3.1.2.10.3.8.1 Retard et instabilité des réponses modes A et C. Le retard et l'instabilité des réponses pour les transactions modes A et C doivent être conformes aux dispositions du § 3.1.1.7.10.
- 3.1.2.10.3.8.2 Retard et instabilité des réponses mode S. Pour tous les niveaux de signal d'entrée compris entre MTL et -21 dBm, le bord avant de la première impulsion du préambule de la réponse (§ 3.1.2.2.5.1.1) doit se produire $128 \pm 0.25 \,\mu s$ après l'inversion de phase synchro (§ 3.1.2.1.5.2.2) de l'impulsion P_6 reçue. Le retard des réponses ne doit pas varier de plus de $0.08 \,\mu s$, valeur de crête (probabilité $99.9 \,\%$).
- 3.1.2.10.3.8.3 Retard et instabilité des réponses « appel général » modes A/C/S. Pour tous les niveaux de signal d'entrée compris entre MTL + 3 dB et -21 dBm, le bord avant de la première impulsion du préambule de la réponse (§ 3.1.2.2.5.1.1) doit se produire $128 \pm 0.5 \,\mu s$ après le bord avant de l'impulsion P_4 de l'interrogation (§ 3.1.2.1.5.1.1). La variation ne doit pas dépasser $0.1 \,\mu s$ valeur de crête (probabilité $99.9 \,\%$).

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 92 de 133 1 Janvier 2016

Note.— Une variation de crête de 0,1 µs est compatible avec la valeur prescrite au § 3.1.1.7.10.

3.1.2.10.3.9 *Temporisateurs*. La durée et les caractéristiques des temporisateurs doivent être conformes aux indications du Tableau 3-9. Tous les temporisateurs doivent pouvoir être remis en marche. Dès réception d'une commande de démarrage ils doivent fonctionner pendant la durée spécifiée. Il doit en être ainsi qu'ils soient ou non en état de fonctionnement au moment de cette réception. Lorsqu'un temporisateur reçoit une commande de remise à zéro, il cesse de fonctionner et retourne à son état initial pour se préparer à une commande de démarrage.

Remise Temporisateur Durée Tolérance à zéro Désignation Nombre Référence (§) Symbole s s Verrouillage non sélectif 3.1.2.6.9.2 T_D 18 ±1 non T_{C} Alerte temporaire 3.1.2.6.10.1.1.2 1 18 ±1 non SPI 1 3.1.2.6.10.1.3 T_{I} 18 ±1 non Réservations B, C, D 3* 3.1.2.6.11.3.1 T_R 18 ±1 oui Verrouillage multisite 3.1.2.6.9.1 Τı 78 18 ±1 non * A la demande

Tableau 3.9 — Caractéristiques de temporisateurs

- 3.1.2.10.3.10 *Inhibition des réponses*. Les réponses aux interrogations appel général modes A/C/S ou mode S seulement doivent toujours être inhibées quand l'aéronef indique une situation au sol. Il ne doit pas être possible d'inhiber les réponses aux interrogations mode S à adressage discret, que l'aéronef soit en vol ou au sol.
- 3.1.2.10.3.10.1 Les aéronefs peuvent être dotés d'un moyen automatique de détection de la situation « à la surface » et que cette information soit communiquée au transpondeur.
- 3.1.2.10.3.10.2 Les réponses modes A/C peuvent être inhibées lorsque l'aéronef est au sol pour qu'il n'y ait pas de brouillage lorsqu'il se trouve à proximité immédiate d'un interrogateur ou d'autres aéronefs.
- Note.— Les interrogations à adressage discret mode S n'entraînent pas de brouillage dans ce cas et elles peuvent être nécessaires aux communications sur liaison de données avec des aéronefs se trouvant à la surface de l'aéroport. Les squitters d'acquisition peuvent servir à assurer la surveillance passive des aéronefs à la surface de l'aéroport.
- 3.1.2.10.4 Système d'antennes de transpondeur et fonctionnement en diversité. Les transpondeurs mode S équipés pour le fonctionnement en diversité doivent avoir deux ports RF pour utiliser deux antennes disposées l'une à la partie supérieure du fuselage et l'autre à la partie inférieure. Lorsque le signal capté par l'une de ces antennes est choisi pour être accepté, la réponse doit être obligatoirement transmise sur la même antenne.
- 3.1.2.10.4.1 *Diagramme de rayonnement*. Le diagramme de rayonnement des antennes mode S installées à bord des aéronefs doit être l'équivalent nominal de celui d'une antenne unipolaire quart d'onde à plan de sol.
- Note.— Les antennes de transpondeur conçues pour augmenter le gain aux dépens de l'ouverture du faisceau dans le plan vertical ne sont pas souhaitables, car leurs performances sont médiocres dans les virages.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 93 de 133 1 Janvier 2016

- 3.1.2.10.4.2 *Emplacement des antennes*. Les antennes supérieure et inférieure doivent être montées aussi près que possible de l'axe du fuselage. Elles doivent être situées de manière que leur champ soit gêné le moins possible dans le plan horizontal.
- 3.1.2.10.4.2.1 La distance horizontale entre les antennes supérieure et inférieure peut ne pas dépasser 7,6 m (25 ft).
- Note.— Cette spécification est destinée à permettre l'emploi de tout transpondeur équipé pour le fonctionnement en diversité (y compris des câbles) avec toute installation d'antenne en diversité, tout en respectant la condition du § 3.1.2.10.4.5.
- 3.1.2.10.4.3 Sélection de l'antenne. Les transpondeurs mode S équipés pour le fonctionnement en diversité doivent être capables d'évaluer une séquence d'impulsions reçues simultanément sur les deux canaux d'antenne, afin de déterminer individuellement pour chaque canal si l'impulsion P_1 et l'impulsion P_2 d'un préambule d'interrogation mode S répondent aux spécifications de l'interrogation mode S définie au § 3.1.2.1 et si l'impulsion P_1 et l'impulsion P_3 d'une interrogation mode A, mode C ou intermodes répondent aux spécifications des interrogations mode A et mode C définies au § 3.1.1.
- Note.— Les transpondeurs équipés pour le fonctionnement en diversité peuvent, à titre facultatif, être capables d'évaluer d'autres caractéristiques des impulsions des interrogations reçues en vue de la sélection de canal diversité. Le transpondeur peut, par exemple, évaluer une interrogation mode S complète reçue simultanément sur les deux canaux afin de déterminer individuellement pour chaque canal si cette interrogation remplit les conditions d'acceptation des interrogations mode S, qui sont indiquées au § 3.1.2.4.1.2.3.
- 3.1.2.10.4.3.1 Si les deux canaux reçoivent simultanément au moins une paire d'impulsions P_1-P_2 qui répond aux spécifications d'une interrogation mode S, ou une paire d'impulsions P_1-P_3 qui répond aux spécifications d'une interrogation mode A ou mode C, ou si les deux canaux acceptent simultanément une interrogation complète, l'antenne sur laquelle le signal est le plus fort doit être sélectionnée pour la réception de la suite (éventuelle) de l'interrogation et pour la transmission de la réponse.
- 3.1.2.10.4.3.2 Si un seul canal reçoit une paire d'impulsions qui répond aux spécifications de l'interrogation, ou si un seul canal accepte une interrogation, l'antenne correspondant à ce canal doit être choisie, quelle que soit la force du signal reçu.
- 3.1.2.10.4.3.3 Seuil de sélection. Si la sélection de l'antenne est fonction du niveau du signal, on doit effectuer cette sélection à tous les niveaux compris entre MTL et –21 dBm.
 - Note.— Si la différence de niveau est inférieure à 3 dB, le choix de l'antenne est sans importance.
- 3.1.2.10.4.3.4 Tolérance relative à l'intervalle entre la réception du signal sur une antenne et sa réception sur l'autre. Si une interrogation est reçue sur l'une des deux antennes 0,125 µs ou moins avant d'être reçue sur l'autre, on doit considérer que la réception est simultanée et l'on doit appliquer les critères ci-dessus pour la sélection de l'antenne. Si la réception de l'interrogation acceptée sur l'une des deux antennes a lieu 0,375 µs ou plus avant la réception sur l'autre antenne, l'antenne choisie pour la réponse doit être celle qui a reçu l'interrogation la première. Si l'intervalle de temps est compris entre 0,125 et 0,375 µs, le transpondeur doit choisir, pour émettre la réponse, une antenne sur la base des critères d'interrogation simultanée ou la première antenne à recevoir l'interrogation.
- 3.1.2.10.4.4 *Isolation des canaux de transmission diversité*. La puissance de crête RF rayonnée par l'antenne choisie doit dépasser d'au moins 20 dB la puissance rayonnée par l'autre antenne.
- 3.1.2.10.4.5 Délai de réponse des transpondeurs en diversité. Dans les transmissions bidirectionnelles, la différence totale de délai moyen de réponse entre les deux canaux d'antenne (compte tenu du retard différentiel causé par les câbles qui relient le transpondeur aux antennes et de la distance horizontale le long de l'axe du fuselage entre les deux antennes) ne doit pas dépasser 0,13 µs pour les interrogations d'égale amplitude. Cette condition doit s'appliquer aux signaux d'interrogation dont le niveau est compris entre MTL + 3 dB et –21 dBm.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 94 de 133 1 Janvier 2016

Les conditions relatives à l'instabilité dans chacun des canaux doivent rester celles qui sont spécifiées pour les transpondeurs qui ne fonctionnent pas en diversité.

Note.— Cette condition limite l'instabilité apparente due à la commutation d'antenne et aux différences de retard en câble.

3.1.2.10.5 TRAITEMENT DES DONNEES ET INTERFACES

- 3.1.2.10.5.1 *Données directes*. Les données directes sont celles qui sont exigées pour le protocole de surveillance du système mode S.
- 3.1.2.10.5.1.1 *Données directes fixes*. Les données directes fixes, c'est-à-dire les données relatives à l'aéronef qui ne changent pas en vol, sont les suivantes :
 - a) l'adresse d'aéronef (§ 3.1.2.4.1.2.3.1.1 et 3.1.2.5.2.2.2);
 - b) la vitesse maximale (§ 3.1.2.8.2.2);
 - c) les marques d'immatriculation si elles servent à l'identification du vol (§ 3.1.2.9.1.1).
- 3.1.2.10.5.1.2 *Interfaces pour données directes fixes*. Les interfaces entre le transpondeur et l'aéronef peuvent être telles que les valeurs des données directes fixes soient fonction de l'installation de bord et non de la configuration du transpondeur.
- Note.— La présente spécification a pour objet de favoriser les techniques d'interface qui permettent de changer de transpondeur sans avoir à toucher au transpondeur lui-même pour positionner les données directes fixes.
- 3.1.2.10.5.1.3 *Données directes variables*. Les données directes variables, c'est-à-dire celles qui concernent l'aéronef et peuvent changer en vol, sont les suivantes :
 - a) le code d'altitude mode C (§ 3.1.2.6.5.4);
 - b) le code d'identité mode A (§ 3.1.2.6.7.1);
 - c) la situation « au sol » (§ 3.1.2.5.2.2.1, 3.1.2.6.5.1 et 3.1.2.8.2.1);
 - d) l'identification d'aéronef si elle est différente des margues d'immatriculation (§ 3.1.2.9.1.1);
 - e) la SPI (§ 3.1.2.6.10.1.3).
 - 3.1.2.10.5.1.4 Interfaces pour données directes variables.
- 3.1.2.10.5.1.4.1 Un moyen doit être prévu pour permettre au pilote, pendant que l'aéronef est au sol ou en vol, d'insérer la SPI sans qu'il soit nécessaire d'entrer ou de modifier d'autres données de vol.
- 3.1.2.10.5.1.4.2 Un moyen doit être prévu pour permettre d'afficher le code d'identité mode A au pilote, pendant que l'aéronef est au sol ou en vol, sans qu'il soit nécessaire d'entrer ou de modifier d'autres données de vol.
- 3.1.2.10.5.1.4.3 Pour les transpondeurs de niveau 2 et de niveaux supérieurs, un moyen doit être prévu pour permettre, pendant que l'aéronef est au sol ou en vol, d'afficher l'identification de l'aéronef au pilote et, lorsqu'elle contient des données variables [3.1.2.10.5.1.3, alinéa d)], de les modifier sans qu'il soit nécessaire d'entrer ou de modifier d'autres données de vol.
- Note.— Le moyen employé par le pilote pour entrer les données doit être aussi simple et efficace que possible afin de réduire au minimum le temps nécessaire à la saisie des données et les risques d'erreur.
- 3.1.2.10.5.1.4.4 Des interfaces doivent être prévues pour accepter le code d'altitude-pression et le code de situation « au sol ».
 - Note.— Aucune conception particulière d'interface n'est prescrite pour les données directes variables.
 - 3.1.2.10.5.2 Données indirectes

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 95 de 133 1 Janvier 2016

Note.— Les données indirectes sont celles qui traversent le transpondeur dans un sens ou dans l'autre mais qui n'influent pas sur la fonction de surveillance.

Si les points d'origine ou de destination des données indirectes ne font pas partie intégrante du transpondeur, on doit avoir recours à des interfaces pour assurer les connexions nécessaires.

3.1.2.10.5.2.1 Fonction des interfaces

- Note.— Les interfaces pour données indirectes pour les transactions standard servent aux interrogations qui exigent une réponse et à la fonction de diffusion. Pour les interfaces pour données indirectes destinées aux ELM, qui desservent ce système, le transpondeur doit être équipé de circuits de mémoire tampon et de protocoles. Les ports des interfaces peuvent être distincts selon la direction et selon le service, ou être combinés de différentes manières.
- 3.1.2.10.5.2.1.1 Interface pour transactions montantes de longueur standard. Cette interface doit assurer la transmission de tous les bits des interrogations acceptées (éventuellement à l'exception du champ AP), sauf lorsque UF = 0, 11 ou 16.
 - Note.— Le champ AP peut aussi être transmis aux fins d'intégrité de la transaction.
- 3.1.2.10.5.2.1.2 Interface pour transactions descendantes de longueur standard. Les transpondeurs qui transmettent une information provenant d'un périphérique doivent être capables de recevoir des bits ou des structures binaires pour les insérer en des points appropriés de la transmission. Ces points ne doivent pas comprendre ceux où sont insérées des structures binaires produites intérieurement par le transpondeur ni le champ AP de la réponse.

Les transpondeurs qui transmettent une information en utilisant le format Comm-B doivent avoir accès immédiat aux données demandées, puisqu'ils doivent répondre à une interrogation en transmettant les données demandées.

Note.— Cette exigence peut être satisfaite de deux manières :

- a) le transpondeur peut être équipé de mémoires tampons pour les données internes et les protocoles ;
- b) le transpondeur peut utiliser une interface en temps réel fonctionnant de manière que les données montantes sortent du transpondeur avant que la réponse correspondante soit générée et que les données descendantes arrivent au transpondeur à temps pour être incluses dans la réponse.
- 3.1.2.10.5.2.1.3 Interface pour messages étendus (ELM)
- Note.— L'interface ELM extrait du transpondeur et lui fournit les données échangées entre les aéronefs et le sol au moyen du protocole ELM (§ 3.1.2.7).
 - 3.1.2.10.5.2.2 Cadences des transactions de données indirectes
- 3.1.2.10.5.2.2.1 Transactions de longueur standard. Les transpondeurs équipés pour transmettre des informations à destination et en provenance de dispositifs extérieurs doivent être capables de traiter les données contenues dans un nombre de réponses au moins égal à celui qui est prescrit au § 3.1.2.10.3.7.2 pour les taux de réponse minimaux et les données montantes contenues dans des interrogations dont la remise se fait à une cadence d'au moins :
 - 50 interrogations longues dans tout intervalle de 1 s
 - 18 interrogations longues dans un intervalle de 100 ms
 - 8 interrogations longues dans un intervalle de 25 ms
 - 4 interrogations longues dans un intervalle de 1,6 ms.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 96 de 133 1 Janvier 2016

Note 1.— Un transpondeur dont le taux de réponse est supérieur aux valeurs minimales du § 3.1.2.10.3.7.2 n'a pas besoin d'accepter des interrogations de longue durée lorsqu'il a atteint les limites ci-dessus de traitement des données montantes.

- Note 2.— La réponse mode S est le seul moyen d'accuser réception des données d'une interrogation mode S. Par conséquent, si le transpondeur est capable de répondre à une interrogation, l'installation mode S doit être capable d'accepter les données contenues dans cette interrogation, quel que soit l'intervalle de temps entre cette interrogation et les autres interrogations acceptées. Le chevauchement des faisceaux mode S de plusieurs interrogateurs pourrait entraîner la nécessité de traiter et de mettre en mémoire tampon des volumes de données considérables. Les valeurs minimales décrites ci-dessus ramènent les besoins de traitement des données à un niveau réaliste et la possibilité de non-acceptation permet d'informer l'interrogateur que les données cesseront temporairement d'être acceptées.
- 3.1.2.10.5.2.2.2 Transactions de longue durée. Les transpondeurs de niveau 3 (§ 2.1.5.1.3) et les transpondeurs de niveau 4 (§ 2.1.5.1.4) doivent être capables de transférer des données d'au moins 4 ELM montants complets de 16 segments (§ 3.1.2.7.4) en 4 s. Les transpondeurs de niveau 5 (§ 2.1.5.1.5) doivent être capables de transférer des données d'au moins 4 ELM montants complets de 16 segments en 1 s et doivent être capables d'accepter au moins 2 ELM montants complets de 16 segments avec le même code II en 250 ms. Les transpondeurs de niveau 4 doivent être capables de transmettre au moins 1 ELM descendant de 4 segments (§ 3.1.2.7.7 et 3.1.2.10.3.7.3) en 1 s. Les transpondeurs de niveau 5 doivent être capables de transmettre au moins 1 ELM descendant de 16 segments en 1 s.
- 3.1.2.10.5.2.2.2.1 Les transpondeurs de niveau 3 et de niveau 4 peuvent accepter au moins 2 ELM montants complets de 16 segments en 250 ms.
 - 3.1.2.10.5.2.3 Formats de données pour les transactions de longueur standard et les transactions de paramètres d'aéronef en liaison descendante (DAP) obligatoires
- 3.1.2.10.5.2.3.1 Tous les transpondeurs de niveau 2 et au-dessus doivent prendre en charge les registres suivants :
 - les comptes rendus de capacité (§ 3.1.2.6.10.2);
 - le registre de protocole d'identification d'aéronef 20 {HEX} (§ 3.1.2.9) ; et
 - dans le cas des aéronefs équipés de l'ACAS, le registre d'avis de résolution en vigueur 30 {HEX} (§ 4.3.8.4.2.2).
- 3.1.2.10.5.2.3.2 Là où ils sont exigés, les paramètres d'aéronef en liaison descendante (DAP) doivent être pris en charge par les registres énumérés dans le Tableau 3-10. Les formats et les cadences minimales d'actualisation des registres de transpondeur doivent être mis en œuvre de façon cohérente, afin d'assurer l'interopérabilité.
- Note.— Les formats et les cadences d'actualisation de chaque registre et de l'application flash de données sont spécifiés dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI.
- 3.1.2.10.5.2.3.3 L'interface de transaction de longueur standard de liaison descendante doit transmettre les DAP au transpondeur, qui les transmet au sol. Chaque DAP doit être inséré dans le format Comm-B (champ MB) et peut être extrait en utilisant soit le protocole Comm-B déclenché au sol (GICB), soit le canal MSP descendant 3 de l'application flash de données.
- 3.1.2.10.5.3 *Intégrité de la transmission des données*. Les transpondeurs qui emploient des interfaces pour données doivent être dotés d'une protection suffisante pour garantir des taux d'erreurs inférieurs à une erreur sur 10³ messages et inférieurs à une erreur non décelée sur 10⁷ transmissions de 112 bits dans les deux sens entre l'antenne et chaque port d'interface.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 97 de 133 1 Janvier 2016

Tableau 3-10. Registres des DAP

Registre	Nom	Contenu	Bits
40 (HEX)	Intention choisie dans le plan vertical	Altitude choisie à partir du MCP/FCU	1-13
		Altitude choisie à partir du FMS	14-26
		Réglage de pression barométrique moins 800 mb	27-39
		Bits de mode MCP/FCU	48-51
		Bits de la source d'altitude cible	54-56
50 (HEX)	Compte rendu de route et de virage	Angle de roulis	1-11
		Angle de route vrai	12-23
		Vitesse sol	24-34
		Variation angulaire de route	35-45
		Vitesse vraie	46-56
60 (HEX)	Compte rendu de cap et de vitesse	Cap magnétique	1-12
		Vitesse indiquée	13-23
		Mach	24-34
		Variation de l'altitude barométrique	35-45
		Vitesse verticale inertielle	46-56

- 3.1.2.10.5.4 Annulation des messages. L'interface pour transactions descendantes de longueur standard, ainsi que l'interface pour messages étendus, doivent comprendre la possibilité d'annuler un message envoyé au transpondeur pour être remis à la station sol mais dont le cycle de remise n'a pas été achevé (c.-à-d. que la clôture n'a pas été effectuée par un interrogateur sol).
- Note.— Cette possibilité est nécessaire, par exemple, pour annuler un message si la remise est tentée lorsque l'aéronef ne se trouve pas dans la zone de couverture d'une station sol mode S. Le message doit alors être annulé afin de ne pas être lu et interprété comme étant un message actuel lorsque l'aéronef pénètre à nouveau dans l'espace aérien mode S.
- 3.1.2.10.5.5 *Message dirigé depuis l'aéronef*. Ce type de message exige toutes les mesures indiquées au § 3.1.2.10.5.4, ainsi que le transfert au transpondeur de l'identificateur d'interrogateur du site qui doit recevoir le message.
 - 3.1.2.11 CARACTERISTIQUES ESSENTIELLES DE SYSTEME DE L'INTERROGATEUR MODE S AU SOL
- Note.— Pour que le fonctionnement de l'interrogateur mode S ne nuise pas aux interrogateurs modes A/C, les interrogateurs mode S sont soumis à des limites de performances.
- 3.1.2.11.1 *Cadences de répétition des interrogations*. Les interrogateurs mode S doivent utiliser les cadences de répétition les plus faibles possibles dans tous les modes d'interrogation.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 98 de 133

Janvier 2016

Note.— La technique monopulse permet d'obtenir des données d'azimut précises aux faibles cadences d'interrogation.

- 3.1.2.11.1.1 Cadences de répétition des interrogations
- 3.1.2.11.1.1.1 Pour l'appel général modes A/C/S, utilisé pour l'acquisition, la cadence de répétition des interrogations doit être inférieure à 250 par seconde. Cette cadence doit s'appliquer également aux paires d'interrogations « appel général » mode S seulement et modes A/C seulement utilisées pour l'acquisition en mode multisite.
- 3.1.2.11.1.1.2 Nombre maximal de réponses « appel général » mode S déclenchées par un interrogateur. Dans le cas des aéronefs qui ne sont pas verrouillés, le nombre maximal de réponses « appel général » déclenchées par un interrogateur mode S ne doit pas dépasser en moyenne 6 réponses « appel général » mode S par période de 200 ms et 26 réponses « appel général » mode S sur une période de 18 s.
 - 3.1.2.11.1.2 Cadence de répétition des interrogations destinées aux aéronefs isolés
- 3.1.2.11.1.2.1 *Interrogations appelant une réponse*. Les interrogations mode S qui appellent une réponse ne doivent pas être transmises à des aéronefs isolés à des intervalles inférieurs à 400 µs.
- 3.1.2.11.1.2.2 *Interrogations ELM montantes*. Le délai minimal entre le commencement d'une interrogation Comm-C et celui d'une interrogation Comm-C suivante doit être de 50 µs.
 - 3.1.2.11.1.3 Cadence d'émission des interrogations sélectives
- 3.1.2.11.1.3.1 La cadence d'émission des interrogations sélectives pour tous les interrogateurs mode S doit être :
 - a) inférieure à 2 400 par seconde en moyenne dans un intervalle de 40 millisecondes ;
 - b) inférieure à 480 dans tout secteur de 3 degrés en moyenne dans un intervalle de 1 seconde.
- 3.1.2.11.1.3.2 En outre, la cadence d'émission des interrogations sélectives pour un interrogateur mode S ayant un chevauchement de couverture avec les lobes secondaires d'un autre interrogateur mode S doit être .
 - a) inférieure à 1 200 par seconde en moyenne dans un intervalle de 4 secondes ;
 - b) inférieure à 1 800 par seconde en moyenne dans un intervalle de 1 seconde.
- Note.— La distance minimale type nécessaire pour assurer la séparation des lobes secondaires entre interrogateurs est de 35 km.
- 3.1.2.11.2 *Puissance apparente rayonnée de l'interrogateur.* La puissance apparente rayonnée de toutes les impulsions d'interrogation peut être limitée de la manière décrite au § 3.1.1.8.2.
- 3.1.2.11.3 *Puissance des interrogateurs inactifs*. Lorsque l'émetteur de l'interrogateur ne transmet aucune interrogation, sa puissance apparente rayonnée ne doit pas dépasser –5 dBm aux fréquences comprises entre 960 MHz et 1 215 MHz.
- Note.— Cette limite garantit que les aéronefs qui évoluent à proximité (à un minimum de 1,85 km [1 NM]) de l'interrogateur ne recevront aucun signal brouilleur susceptible d'empêcher leur poursuite par un autre interrogateur. Il est même possible, dans certains cas, que des distances plus faibles entre le premier interrogateur et ces aéronefs présentent de l'importance, par exemple pour la surveillance mode S à la surface d'un aéroport. En pareil cas, il faudra peut-être restreindre davantage la puissance des interrogateurs inactifs.
- 3.1.2.11.3.1 Rayonnement des émissions non essentielles. Le rayonnement en ondes entretenues peut ne pas dépasser 76 dB au-dessous de 1 W.

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 99 de 133 1 Janvier 2016

3.1.2.11.4 Tolérances applicables au signal transmis. Pour que le signal électromagnétique reçu par le transpondeur soit conforme aux dispositions du § 3.1.2.1, le signal transmis doit respecter les tolérances résumées au Tableau 3-11.

Tableau 3-11. Tolérances applicables au signal transmis

Référence (§)	Fonction	Tolérance
3.1.2.1.4.1	Durée des impulsions P ₁ , P ₂ , P ₃ , P ₄ , P ₅	±0,09 µs
	Durée de l'impulsion P ₆	±0,20 µs
3.1.1.4	Position des impulsions P ₁ - P ₃	±0,18 μs
	Position des impulsions P ₁ - P ₂	±0,10 μs
3.1.2.1.5.1.3	Position des impulsions P ₃ - P ₄	±0,04 µs
3.1.2.1.5.2.4	Position des impulsions P ₁ - P ₂	±0,04 μs
	Position de l'impulsion P2 — inversion de phase synchro	±0,04 µs
	Position de l'impulsion P ₆ — inversion de phase synchro	±0,04 µs
	Position de l'impulsion P ₅ — inversion de phase synchro	±0,05 μs
3.1.1.5	Amplitude de l'impulsion P ₃	P ₁ ± 0,5 dB
3.1.2.1.5.1.4	Amplitude de l'impulsion P ₄	P ₃ ± 0,5 dB
3.1.2.1.5.2.5	Amplitude de l'impulsion P ₆	Egale ou supérieure à P ₂ – 0,25 dB
3.1.2.1.4.1	Durées d'établissement des impulsions	0,05 μs minimum, 0,1 μs maximum
3.1.2.1.4.1	Durées d'extinction des impulsions	0,05 µs minimum, 0,2 µs maximum

- 3.1.2.11.5 *Réponse parasite.* Le niveau des réponses à des signaux qui ne sont pas compris dans la bande passante du récepteur peut se situer à 60 dB au moins au-dessous du niveau normal de sensibilité.
- 3.1.2.11.6 Coordination de verrouillage. On ne doit pas faire fonctionner un interrogateur mode S en utilisant le verrouillage « appel général » tant que la coordination n'a pas été réalisée avec tous les autres interrogateurs mode S en fonctionnement dont les couvertures se chevauchent, afin que l'acquisition d'un aéronef mode S ne soit refusée à aucun interrogateur.

Note.— Cette coordination peut être assurée par l'intermédiaire d'un réseau sol ou par l'attribution d'identificateurs d'interrogateur (II). Elle exigera des accords régionaux aux endroits où les couvertures chevauchent les limites internationales.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date

Page 100 de 133 1 Janvier 2016

3.1.2.11.7 *Interrogateurs mobiles.* Toutes les fois que cela est possible, l'acquisition des aéronefs mode S par les interrogateurs mobiles peut se faire par la réception de squitters.

Note.— L'acquisition passive de squitters réduit la charge des canaux et peut être obtenue sans coordination.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 101 de 133 1 Janvier 2016

APPENDICE AU CHAPITRE 3

Code SSR pour la transmission automatique de l'altitude-pression

(Positions attribuées aux impulsions)

	PLAG	Е				POS indique 'absence	-	chaque p	osition,	respecti			
In	ΓERVAI (Pieds		D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	\mathbf{B}_2	B_4	C_1	C_2	C_4
-1 000	à	-950	0	0	0	0	0	0	0	0	0	1	0
-950	à	-850	0	0	0	0	0	0	0	0	1	1	0
-850	à	-750	0	0	0	0	0	0	0	0	1	0	0
-750	à	-650	0	0	0	0	0	0	0	1	1	0	0
-650	à	-550	0	0	0	0	0	0	0	1	1	1	0
-550	à	-450	0	0	0	0	0	0	0	1	0	1	0
-450	à	-350	0	0	0	0	0	0	0	1	0	1	1
-350	à	-250	0	0	0	0	0	0	0	1	0	0	1
-250	à	-150	0	0	0	0	0	0	1	1	0	0	1
-150	à	-50	0	0	0	0	0	0	1	1	0	1	1
-50	à	50	0	0	0	0	0	0	1	1	0	1	0
50	à	150	0	0	0	0	0	0	1	1	1	1	0
150	à	250	0	0	0	0	0	0	1	1	1	0	0
250	à	350	0	0	0	0	0	0	1	0	1	0	0
350	à	450	0	0	0	0	0	0	1	0	1	1	0
450	à	550	0	0	0	0	0	0	1	0	0	1	0
550	à	650	0	0	0	0	0	0	1	0	0	1	1
650	à	750	0	0	0	0	0	0	1	0	0	0	1
750	à	850	0	0	0	0	0	1	1	0	0	0	1
850	à	950	0	0	0	0	0	1	1	0	0	1	1
950	à	1 050	0	0	0	0	0	1	1	0	0	1	0
1 050	à	1 150	0	0	0	0	0	1	1	0	1	1	0
1 150	à	1 250	0	0	0	0	0	1	1	0	1	0	0
1 250	à	1 350	0	0	0	0	0	1	1	1	1	0	0
1 350	à	1 450	0	0	0	0	0	1	1	1	1	1	0
1 450	à	1 550	0	0	0	0	0	1	1	1	0	1	0
1 550	à	1 650	0	0	0	0	0	1	1	1	0	1	1
1 650	à	1 750	0	0	0	0	0	1	1	1	0	0	1
1 750	à	1 850	0	0	0	0	0	1	0	1	0	0	1
1 850	à	1 950	0	0	0	0	0	1	0	1	0	1	1
1 950	à	2 050	0	0	0	0	0	1	0	1	0	1	0
2 050	à	2 150	0	0	0	0	0	1	0	1	1	1	0
2 150	à	2 250	0	0	0	0	0	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 102 de 133 1 Janvier 2016

F	PLAGE	;				! indique	e, pour c		osition,	ONS respecti npulsion			
	ERVALI (Pieds)	LES	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	C_1	C_2	C_4
2 250	à	2 350	0	0	0	0	0	1	0	0	1	0	0
2 350	à	2 450	0	0	0	0	0	1	0	0	1	1	0
2 450	à	2 550	0	0	0	0	0	1	0	0	0	1	0
2 550	à	2 650	0	0	0	0	0	1	0	0	0	1	1
2 650	à	2 750	0	0	0	0	0	1	0	0	0	0	1
2 750	à	2 850	0	0	0	0	1	1	0	0	0	0	1
2 850	à	2 950	0	0	0	0	1	1	0	0	0	1	1
2 950	à	3 050	0	0	0	0	1	1	0	0	0	1	0
3 050	à	3 150	0	0	0	0	1	1	0	0	1	1	0
3 150	à	3 250	0	0	0	0	1	1	0	0	1	0	0
3 250	à	3 350	0	0	0	0	1	1	0	1	1	0	0
3 350	à	3 450	0	0	0	0	1	1	0	1	1	1	0
3 450	à	3 550	0	0	0	0	1	1	0	1	0	1	0
3 550	à	3 650	0	0	0	0	1	1	0	1	0	1	1
3 650	à	3 750	0	0	0	0	1	1	0	1	0	0	1
3 750	à	3 850	0	0	0	0	1	1	1	1	0	0	1
3 850	à	3 950	0	0	0	0	1	1	1	1	0	1	1
3 950	à	4 050	0	0	0	0	1	1	1	1	0	1	0
4 050	à	4 150	0	0	0	0	1	1	1	1	1	1	0
4 150	à	4 250	0	0	0	0	1	1	1	1	1	0	0
4 250	à	4 350	0	0	0	0	1	1	1	0	1	0	0
4 350	à	4 450	0	0	0	0	1	1	1	0	1	1	0
4 450	à	4 550	0	0	0	0	1	1	1	0	0	1	0
4 550	à	4 650	0	0	0	0	1	1	1	0	0	1	1
4 650	à	4 750	0	0	0	0	1	1	1	0	0	0	1
4 750	à	4 850	0	0	0	0	1	0	1	0	0	0	1
4 850	à	4 950	0	0	0	0	1	0	1	0	0	1	1
4 950	à	5 050	0	0	0	0	1	0	1	0	0	1	0
5 050	à	5 150	0	0	0	0	1	0	1	0	1	1	0
5 150	à	5 250	0	0	0	0	1	0	1	0	1	0	0
5 250	à	5 350	0	0	0	0	1	0	1	1	1	0	0
5 350	à	5 450	0	0	0	0	1	0	1	1	1	1	0
5 450	à	5 550	0	0	0	0	1	0	1	1	0	1	0
5 550	à	5 650	0	0	0	0	1	0	1	1	0	1	1
5 650	à	5 750	0	0	0	0	1	0	1	1	0	0	1
5 750	à	5 850	0	0	0	0	1	0	0	1	0	0	1
5 850	à	5 950	0	0	0	0	1	0	0	1	0	1	1
5 950	à	6 050	0	0	0	0	1	0	0	1	0	1	0
6 050	à	6 150	0	0	0	0	1	0	0	1	1	1	0
6 150	à	6 250	0	0	0	0	1	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 103 de 133 1 Janvier 2016

			POSITION DES IMPULSIONS (0 ou 1 indique, pour chaque position, respectivement										
	PLAC	ĴΕ				-	e, pour c e ou la p			-			
In	ΓERVA		D_2	D_4		A_2		B ₁	B_2	В ₄	C_1	C_2	C ₄
	(Pied	<u> </u>			A_1		A_4	D ₁	D ₂	Ъ4	C_1	C_2	C ₄
6 250	à	6 350	0	0	0	0	1	0	0	0	1	0	0
6 350	à	6 450	0	0	0	0	1	0	0	0	1	1	0
6 450	à	6 550	0	0	0	0	1	0	0	0	0	1	0
6 550	à	6 650	0	0	0	0	1	0	0	0	0	1	1
6 650	à	6 750	0	0	0	0	1	0	0	0	0	0	1
6 750	à	6 850	0	0	0	1	1	0	0	0	0	0	1
6 850	à	6 950	0	0	0	1	1	0	0	0	0	1	1
6 950	à	7 050	0	0	0	1	1	0	0	0	0	1	0
7 050	à	7 150	0	0	0	1	1	0	0	0	1	1	0
7 150	à	7 250	0	0	0	1	1	0	0	0	1	0	0
7 250	à	7 350	0	0	0	1	1	0	0	1	1	0	0
7 350	à	7 450	0	0	0	1	1	0	0	1	1	1	0
7 450	à	7 550	0	0	0	1	1	0	0	1	0	1	0
7 550	à	7 650	0	0	0	1	1	0	0	1	0	1	1
7 650	à	7 750	0	0	0	1	1	0	0	1	0	0	1
7 750	à	7 850	0	0	0	1	1	0	1	1	0	0	1
7 850	à	7 950	0	0	0	1	1	0	1	1	0	1	1
7 950	à	8 050	0	0	0	1	1	0	1	1	0	1	0
8 050	à	8 150	0	0	0	1	1	0	1	1	1	1	0
8 150	à	8 250	0	0	0	1	1	0	1	1	1	0	0
8 250	à	8 350	0	0	0	1	1	0	1	0	1	0	0
8 350	à	8 450	0	0	0	1	1	0	1	0	1	1	0
8 450	à	8 550	0	0	0	1	1	0	1	0	0	1	0
8 550	à	8 650	0	0	0	1	1	0	1	0	0	1	1
8 650	à	8 750	0	0	0	1	1	0	1	0	0	0	1
8 750	à	8 850	0	0	0	1	1	1	1	0	0	0	1
8 850	à	8 950	0	0	0	1	1	1	1	0	0	1	1
8 950	à	9 050	0	0	0	1	1	1	1	0	0	1	0
9 050	à	9 150	0	0	0	1	1	1	1	0	1	1	0
9 150	à	9 250	0	0	0	1	1	1	1	0	1	0	0
9 250	à	9 350	0	0	0	1	1	1	1	1	1	0	0
9 350	à	9 450	0	0	0	1	1	1	1	1	1	1	0
9 450	à	9 550	0	0	0	1	1	1	1	1	0	1	0
9 550	à	9 650	0	0	0	1	1	1	1	1	0	1	1
9 650	à	9 750	0	0	0	1	1	1	1	1	0	0	1
9 750	à	9 850	0	0	0	1	1	1	0	1	0	0	1
9 850	à	9 950	0	0	0	1	1	1	0	1	0	1	1
9 950	à	10 050	0	0	0	1	1	1	0	1	0	1	0
10 050	à	10 150	0	0	0	1	1	1	0	1	1	1	0
10 150	à	10 250	0	0	0	1	1	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 104 de 133 1 Janvier 2016

	POSITION DES IMPULSIONS (0 ou 1 indique, pour chaque position, respectivement										
PLAGE											
			l	'absence	e ou la p	résence	d'une ii	mpulsior	1)		
INTERVALLES	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	$\mathrm{B}_{\scriptscriptstyle{4}}$	C_1	C_2	C_4
(Pieds)			•								
10 250 à 10 350	0	0	0	1	1	1	0	0	1	0	0
10 350 à 10 450	0	0	0	1	1	1	0	0	1	1	0
10 450 à 10 550	0	0	0	1	1	1	0	0	0	1	0
10 550 à 10 650	0	0	0	1	1	1	0	0	0	1	1
10 650 à 10 750	0	0	0	1	1	1	0	0	0	0	1
10 750 à 10 850	0	0	0	1	0	1	0	0	0	0	1
10 850 à 10 950	0	0	0	1	0	1	0	0	0	1	1
10 950 à 11 050	0	0	0	1	0	1	0	0	0	1	0
11 050 à 11 150	0	0	0	1	0	1	0	0	1	1	0
11 150 à 11 250	0	0	0	1	0	1	0	0	1	0	0
11 250 à 11 350	0	0	0	1	0	1	0	1	1	0	0
11 350 à 11 450	0	0	0	1	0	1	0	1	1	1	0
11 450 à 11 550	0	0	0	1	0	1	0	1	0	1	0
11 550 à 11 650	0	0	0	1	0	1	0	1	0	1	1
11 650 à 11 750	0	0	0	1	0	1	0	1	0	0	1
11 750 à 11 850	0	0	0	1	0	1	1	1	0	0	1
11 850 à 11 950	0	0	0	1	0	1	1	1	0	1	1
11 950 à 12 050	0	0	0	1	0	1	1	1	0	1	0
12 050 à 12 150	0	0	0	1	0	1	1	1	1	1	0
12 150 à 12 250	0	0	0	1	0	1	1	1	1	0	0
12 250 à 12 350	0	0	0	1	0	1	1	0	1	0	0
12 350 à 12 450	0	0	0	1	0	1	1	0	1	1	0
12 450 à 12 550	0	0	0	1	0	1	1	0	0	1	0
12 550 à 12 650	0	0	0	1	0	1	1	0	0	1	1
12 650 à 12 750	0	0	0	1	0	1	1	0	0	0	1
12 750 à 12 850	0	0	0	1	0	0	1	0	0	0	1
12 850 à 12 950	0	0	0	1	0	0	1	0	0	1	1
12 950 à 13 050	0	0	0	1	0	0	1	0	0	1	0
13 050 à 13 150	0	0	0	1	0	0	1	0	1	1	0
13 150 à 13 250	0	0	0	1	0	0	1	0	1	0	0
13 250 à 13 350	0	0	0	1	0	0	1	1	1	0	0
13 350 à 13 450	0	0	0	1	0	0	1	1	1	1	0
13 450 à 13 550	0	0	0	1	0	0	1	1	0	1	0
13 550 à 13 650	0	0	0	1	0	0	1	1	0	1	1
13 650 à 13 750	0	0	0	1	0	0	1	1	0	0	1
13 750 à 13 850	0	0	0	1	0	0	0	1	0	0	1
13 850 à 13 950	0	0	0	1	0	0	0	1	0	1	1
13 950 à 14 050	0	0	0	1	0	0	0	1	0	1	0
14 050 à 14 150	0	0	0	1	0	0	0	1	1	1	0
14 150 à 14 250	0	0	0	1	0	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 105 de 133 1 Janvier 2016

			POSITION DES IMPULSIONS (0 ou 1 indique, pour chaque position, respectivement										
	PLAC	GE	(0 ou 1 indique, pour chaque position, respectivement l'absence ou la présence d'une impulsion)										
					l	'absence	e ou la p	résence	d'une in	npulsior	1)		
In	ΓERVA (Pied		D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	\mathbf{C}_1	C_2	C_4
14 250	à	14 350	0	0	0	1	0	0	0	0	1	0	0
14 350	à	14 450	0	0	0	1	0	0	0	0	1	1	0
14 450	à	14 550	0	0	0	1	0	0	0	0	0	1	0
14 550	à	14 650	0	0	0	1	0	0	0	0	0	1	1
14 650	à	14 750	0	0	0	1	0	0	0	0	0	0	1
14 750	à	14 850	0	0	1	1	0	0	0	0	0	0	1
14 850	à	14 950	0	0	1	1	0	0	0	0	0	1	1
14 950	à	15 050	0	0	1	1	0	0	0	0	0	1	0
15 050	à	15 150	0	0	1	1	0	0	0	0	1	1	0
15 150	à	15 250	0	0	1	1	0	0	0	0	1	0	0
15 250	à	15 350	0	0	1	1	0	0	0	1	1	0	0
15 350	à	15 450	0	0	1	1	0	0	0	1	1	1	0
15 450	à	15 550	0	0	1	1	0	0	0	1	0	1	0
15 550	à	15 650	0	0	1	1	0	0	0	1	0	1	1
15 650	à	15 750	0	0	1	1	0	0	0	1	0	0	1
15 750	à	15 850	0	0	1	1	0	0	1	1	0	0	1
15 850	à	15 950	0	0	1	1	0	0	1	1	0	1	1
15 950	à	16 050	0	0	1	1	0	0	1	1	0	1	0
16 050	à	16 150	0	0	1	1	0	0	1	1	1	1	0
16 150	à	16 250	0	0	1	1	0	0	1	1	1	0	0
16 250	à	16 350	0	0	1	1	0	0	1	0	1	0	0
16 350	à	16 450	0	0	1	1	0	0	1	0	1	1	0
16 450	à	16 550	0	0	1	1	0	0	1	0	0	1	0
16 550	à	16 650	0	0	1	1	0	0	1	0	0	1	1
16 650	à	16 750	0	0	1	1	0	0	1	0	0	0	1
16 750	à	16 850	0	0	1	1	0	1	1	0	0	0	1
16 850	à	16 950	0	0	1	1	0	1	1	0	0	1	1
16 950	à	17 050	0	0	1	1	0	1	1	0	0	1	0
17 050	à	17 150	0	0	1	1	0	1	1	0	1	1	0
17 150	à	17 250	0	0	1	1	0	1	1	0	1	0	0
17 250	à	17 350	0	0	1	1	0	1	1	1	1	0	0
17 350	à	17 450	0	0	1	1	0	1	1	1	1	1	0
17 450	à	17 550	0	0	1	1	0	1	1	1	0	1	0
17 550	à	17 650	0	0	1	1	0	1	1	1	0	1	1
17 650	à	17 750	0	0	1	1	0	1	1	1	0	0	1
17 750	à	17 850	0	0	1	1	0	1	0	1	0	0	1
17 850	à	17 950	0	0	1	1	0	1	0	1	0	1	1
17 950	à	18 050	0	0	1	1	0	1	0	1	0	1	0
18 050	à	18 150	0	0	1	1	0	1	0	1	1	1	0
18 150	à	18 250	0	0	1	1	0	1	0	1	1	0	0
10 150	и	10 230	U	U	1	1	0	1	U	1	1	v	U

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 106 de 133 1 Janvier 2016

	POSITION DES IMPULSIONS (0 ou 1 indique, pour chaque position, respectivement l'absence ou la présence d'une impulsion)											
PLAGE				-	-			-				
Intervalles												
(Pieds)	D_2	D_4	\mathbf{A}_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	C_1	C_2	C_4	
18 250 à 18 350	0	0	1	1	0	1	0	0	1	0	0	
18 350 à 18 450	0	0	1	1	0	1	0	0	1	1	0	
18 450 à 18 550	0	0	1	1	0	1	0	0	0	1	0	
18 550 à 18 650	0	0	1	1	0	1	0	0	0	1	1	
18 650 à 18 750	0	0	1	1	0	1	0	0	0	0	1	
18 750 à 18 850	0	0	1	1	1	1	0	0	0	0	1	
18 850 à 18 950	0	0	1	1	1	1	0	0	0	1	1	
18 950 à 19 050	0	0	1	1	1	1	0	0	0	1	0	
19 050 à 19 150	0	0	1	1	1	1	0	0	1	1	0	
19 150 à 19 250	0	0	1	1	1	1	0	0	1	0	0	
19 250 à 19 350	0	0	1	1	1	1	0	1	1	0	0	
19 350 à 19 450	0	0	1	1	1	1	0	1	1	1	0	
19 450 à 19 550	0	0	1	1	1	1	0	1	0	1	0	
19 550 à 19 650	0	0	1	1	1	1	0	1	0	1	1	
19 650 à 19 750	0	0	1	1	1	1	0	1	0	0	1	
19 750 à 19 850	0	0	1	1	1	1	1	1	0	0	1	
19 850 à 19 950	0	0	1	1	1	1	1	1	0	1	1	
19 950 à 20 050	0	0	1	1	1	1	1	1	0	1	0	
20 050 à 20 150	0	0	1	1	1	1	1	1	1	1	0	
20 150 à 20 250	0	0	1	1	1	1	1	1	1	0	0	
20 250 à 20 350	0	0	1	1	1	1	1	0	1	0	0	
20 350 à 20 450	0	0	1	1	1	1	1	0	1	1	0	
20 450 à 20 550	0	0	1	1	1	1	1	0	0	1	0	
20 550 à 20 650	0	0	1	1	1	1	1	0	0	1	1	
20 650 à 20 750	0	0	1	1	1	1	1	0	0	0	1	
20 750 à 20 850	0	0	1	1	1	0	1	0	0	0	1	
20 850 à 20 950	0	0	1	1	1	0	1	0	0	1	1	
20 950 à 21 050	0	0	1	1	1	0	1	0	0	1	0	
21 050 à 21 150	0	0	1	1	1	0	1	0	1	1	0	
21 150 à 21 250	0	0	1	1	1	0	1	0	1	0	0	
21 250 à 21 350	0	0	1	1	1	0	1	1	1	0	0	
21 350 à 21 450	0	0	1	1	1	0	1	1	1	1	0	
21 450 à 21 550	0	0	1	1	1	0	1	1	0	1	0	
21 550 à 21 650	0	0	1	1	1	0	1	1	0	1	1	
21 650 à 21 750	0	0	1	1	1	0	1	1	0	0	1	
21 750 à 21 850	0	0	1	1	1	0	0	1	0	0	1	
21 850 à 21 950	0	0	1	1	1	0	0	1	0	1	1	
21 950 à 22 050	0	0	1	1	1	0	0	1	0	1	0	
22 050 à 22 150	0	0	1	1	1	0	0	1	1	1	0	
22 150 à 22 250	0	0	1	1	1	0	0	1	1	0	0	

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 107 de 133 1 Janvier 2016

	POSITION DES IMPULSIONS (0 ou 1 indique, pour chaque position, respectivement										
PLAGE				-	-			-			ļ
			l	'absence	e ou la p	résence	d'une ii	mpulsion	1)		
INTERVALLES	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	C_1	C_2	C_4
(Pieds)											
22 250 à 22 350	0	0	1	1	1	0	0	0	1	0	0
22 350 à 22 450	0	0	1	1	1	0	0	0	1	1	0
22 450 à 22 550	0	0	1	1	1	0	0	0	0	1	0
22 550 à 22 650	0	0	1	1	1	0	0	0	0	1	1
22 650 à 22 750	0	0	1	1	1	0	0	0	0	0	1
22 750 à 22 850	0	0	1	0	1	0	0	0	0	0	1
22 850 à 22 950	0	0	1	0	1	0	0	0	0	1	1
22 950 à 23 050	0	0	1	0	1	0	0	0	0	1	0
23 050 à 23 150	0	0	1	0	1	0	0	0	1	1	0
23 150 à 23 250	0	0	1	0	1	0	0	0	1	0	0
23 250 à 23 350	0	0	1	0	1	0	0	1	1	0	0
23 350 à 23 450	0	0	1	0	1	0	0	1	1	1	0
23 450 à 23 550	0	0	1	0	1	0	0	1	0	1	0
23 550 à 23 650	0	0	1	0	1	0	0	1	0	1	1
23 650 à 23 750	0	0	1	0	1	0	0	1	0	0	1
23 750 à 23 850	0	0	1	0	1	0	1	1	0	0	1
23 850 à 23 950	0	0	1	0	1	0	1	1	0	1	1
23 950 à 24 050	0	0	1	0	1	0	1	1	0	1	0
24 050 à 24 150	0	0	1	0	1	0	1	1	1	1	0
24 150 à 24 250	0	0	1	0	1	0	1	1	1	0	0
24 250 à 24 350	0	0	1	0	1	0	1	0	1	0	0
24 350 à 24 450	0	0	1	0	1	0	1	0	1	1	0
24 450 à 24 550	0	0	1	0	1	0	1	0	0	1	0
24 550 à 24 650	0	0	1	0	1	0	1	0	0	1	1
24 650 à 24 750	0	0	1	0	1	0	1	0	0	0	1
24 750 à 24 850	0	0	1	0	1	1	1	0	0	0	1
24 850 à 24 950	0	0	1	0	1	1	1	0	0	1	1
24 950 à 25 050	0	0	1	0	1	1	1	0	0	1	0
25 050 à 25 150	0	0	1	0	1	1	1	0	1	1	0
25 150 à 25 250	0	0	1	0	1	1	1	0	1	0	0
25 250 à 25 350	0	0	1	0	1	1	1	1	1	0	0
25 350 à 25 450	0	0	1	0	1	1	1	1	1	1	0
25 450 à 25 550	0	0	1	0	1	1	1	1	0	1	0
25 550 à 25 650	0	0	1	0	1	1	1	1	0	1	1
25 650 à 25 750	0	0	1	0	1	1	1	1	0	0	1
25 750 à 25 850	0	0	1	0	1	1	0	1	0	0	1
25 850 à 25 950	0	0	1	0	1	1	0	1	0	1	1
25 950 à 26 050	0	0	1	0	1	1	0	1	0	1	0
26 050 à 26 150	0	0	1	0	1	1	0	1	1	1	0
26 150 à 26 250	0	0	1	0	1	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 108 de 133 1 Janvier 2016

	POSITION DES IMPULSIONS (0 ou 1 indique, pour chaque position, respectivement										
PLAGE				-	-			-			
			l	'absence	e ou la p	résence	d'une ii	npulsior	1)		
INTERVALLES (Pieds)	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	C_1	C_2	C_4
26 250 à 26 350	0	0	1	0	1	1	0	0	1	0	0
26 350 à 26 450	0	0	1	0	1	1	0	0	1	1	0
26 450 à 26 550	0	0	1	0	1	1	0	0	0	1	0
26 550 à 26 650	0	0	1	0	1	1	0	0	0	1	1
26 650 à 26 750	0	0	1	0	1	1	0	0	0	0	1
26 750 à 26 850	0	0	1	0	0	1	0	0	0	0	1
26 850 à 26 950	0	0	1	0	0	1	0	0	0	1	1
26 950 à 27 050	0	0	1	0	0	1	0	0	0	1	0
27 050 à 27 150	0	0	1	0	0	1	0	0	1	1	0
27 150 à 27 250	0	0	1	0	0	1	0	0	1	0	0
27 250 à 27 350	0	0	1	0	0	1	0	1	1	0	0
27 350 à 27 450	0	0	1	0	0	1	0	1	1	1	0
27 450 à 27 550	0	0	1	0	0	1	0	1	0	1	0
27 550 à 27 650	0	0	1	0	0	1	0	1	0	1	1
27 650 à 27 750	0	0	1	0	0	1	0	1	0	0	1
27 750 à 27 850	0	0	1	0	0	1	1	1	0	0	1
27 850 à 27 950	0	0	1	0	0	1	1	1	0	1	1
27 950 à 28 050	0	0	1	0	0	1	1	1	0	1	0
28 050 à 28 150	0	0	1	0	0	1	1	1	1	1	0
28 150 à 28 250	0	0	1	0	0	1	1	1	1	0	0
28 250 à 28 350	0	0	1	0	0	1	1	0	1	0	0
28 350 à 28 450	0	0	1	0	0	1	1	0	1	1	0
28 450 à 28 550	0	0	1	0	0	1	1	0	0	1	0
28 550 à 28 650	0	0	1	0	0	1	1	0	0	1	1
28 650 à 28 750	0	0	1	0	0	1	1	0	0	0	1
28 750 à 28 850	0	0	1	0	0	0	1	0	0	0	1
28 850 à 28 950	0	0	1	0	0	0	1	0	0	1	1
28 950 à 29 050	0	0	1	0	0	0	1	0	0	1	0
29 050 à 29 150	0	0	1	0	0	0	1	0	1	1	0
29 150 à 29 250	0	0	1	0	0	0	1	0	1	0	0
29 250 à 29 350	0	0	1	0	0	0	1	1	1	0	0
29 350 à 29 450	0	0	1	0	0	0	1	1	1	1	0
29 450 à 29 550	0	0	1	0	0	0	1	1	0	1	0
29 550 à 29 650	0	0	1	0	0	0	1	1	0	1	1
29 650 à 29 750	0	0	1	0	0	0	1	1	0	0	1
29 750 à 29 850	0	0	1	0	0	0	0	1	0	0	1
29 850 à 29 950	0	0	1	0	0	0	0	1	0	1	1
29 950 à 30 050	0	0	1	0	0	0	0	1	0	1	0
30 050 à 30 150	0	0	1	0	0	0	0	1	1	1	0
30 150 à 30 250	0	0	1	0	0	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 109 de 133 1 Janvier 2016

	PLA	GE				POS indique 'absence	e, pour c	haque p		respecti			
In	ΓERV. (Pieα	ALLES ds)	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	C_1	C_2	C_4
30 250	à	30 350	0	0	1	0	0	0	0	0	1	0	0
30 350	à	30 450	0	0	1	0	0	0	0	0	1	1	0
30 450	à	30 550	0	0	1	0	0	0	0	0	0	1	0
30 550	à	30 650	0	0	1	0	0	0	0	0	0	1	1
30 650	à	30 750	0	0	1	0	0	0	0	0	0	0	1
30 750	à	30 850	0	1	1	0	0	0	0	0	0	0	1
30 850	à	30 950	0	1	1	0	0	0	0	0	0	1	1
30 950	à	31 050	0	1	1	0	0	0	0	0	0	1	0
31 050	à	31 150	0	1	1	0	0	0	0	0	1	1	0
31 150	à	31 250	0	1	1	0	0	0	0	0	1	0	0
31 250	à	31 350	0	1	1	0	0	0	0	1	1	0	0
31 350	à	31 450	0	1	1	0	0	0	0	1	1	1	0
31 450	à	31 550	0	1	1	0	0	0	0	1	0	1	0
31 550	à	31 650	0	1	1	0	0	0	0	1	0	1	1
31 650	à	31 750	0	1	1	0	0	0	0	1	0	0	1
31 750	à	31 850	0	1	1	0	0	0	1	1	0	0	1
31 850	à	31 950	0	1	1	0	0	0	1	1	0	1	1
31 950	à	32 050	0	1	1	0	0	0	1	1	0	1	0
32 050	à	32 150	0	1	1	0	0	0	1	1	1	1	0
32 150	à	32 250	0	1	1	0	0	0	1	1	1	0	0
32 250	à	32 350	0	1	1	0	0	0	1	0	1	0	0
32 350	à	32 450	0	1	1	0	0	0	1	0	1	1	0
32 450	à	32 550	0	1	1	0	0	0	1	0	0	1	0
32 550	à	32 650	0	1	1	0	0	0	1	0	0	1	1
32 650	à	32 750	0	1	1	0	0	0	1	0	0	0	1
32 750	à	32 850	0	1	1	0	0	1	1	0	0	0	1
32 850	à	32 950	0	1	1	0	0	1	1	0	0	1	1
32 950	à	33 050	0	1	1	0	0	1	1	0	0	1	0
33 050	à	33 150	0	1	1	0	0	1	1	0	1	1	0
33 150	à	33 250	0	1	1	0	0	1	1	0	1	0	0
33 250	à	33 350	0	1	1	0	0	1	1	1	1	0	0
33 350	à	33 450	0	1	1	0	0	1	1	1	1	1	0
33 450	à	33 550	0	1	1	0	0	1	1	1	0	1	0
33 550	à	33 650	0	1	1	0	0	1	1	1	0	1	1
33 650	à	33 750	0	1	1	0	0	1	1	1	0	0	1
33 750	à	33 850	0	1	1	0	0	1	0	1	0	0	1
33 850	à	33 950	0	1	1	0	0	1	0	1	0	1	1
33 950	à	34 050	0	1	1	0	0	1	0	1	0	1	0
34 050	à	34 150	0	1	1	0	0	1	0	1	1	1	0
34 150	à	34 250	0	1	1	0	0	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 110 de 133 1 Janvier 2016

	POSITION DES IMPULSIONS										
PLAGE	(0 ou 1 indique, pour chaque position, respectivement l'absence ou la présence d'une impulsion)										
			l	'absence	e ou la p	résence	d'une ii	mpulsior	1)		
INTERVALLES	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	$\mathrm{B}_{\scriptscriptstyle{4}}$	C_1	C_2	C_4
(Pieds)					-						
34 250 à 34 350	0	1	1	0	0	1	0	0	1	0	0
34 350 à 34 450	0	1	1	0	0	1	0	0	1	1	0
34 450 à 34 550	0	1	1	0	0	1	0	0	0	1	0
34 550 à 34 650	0	1	1	0	0	1	0	0	0	1	1
34 650 à 34 750	0	1	1	0	0	1	0	0	0	0	1
34 750 à 34 850	0	1	1	0	1	1	0	0	0	0	1
34 850 à 34 950	0	1	1	0	1	1	0	0	0	1	1
34 950 à 35 050	0	1	1	0	1	1	0	0	0	1	0
35 050 à 35 150	0	1	1	0	1	1	0	0	1	1	0
35 150 à 35 250	0	1	1	0	1	1	0	0	1	0	0
35 250 à 35 350	0	1	1	0	1	1	0	1	1	0	0
35 350 à 35 450	0	1	1	0	1	1	0	1	1	1	0
35 450 à 35 550	0	1	1	0	1	1	0	1	0	1	0
35 550 à 35 650	0	1	1	0	1	1	0	1	0	1	1
35 650 à 35 750	0	1	1	0	1	1	0	1	0	0	1
35 750 à 35 850	0	1	1	0	1	1	1	1	0	0	1
35 850 à 35 950	0	1	1	0	1	1	1	1	0	1	1
35 950 à 36 050	0	1	1	0	1	1	1	1	0	1	0
36 050 à 36 150	0	1	1	0	1	1	1	1	1	1	0
36 150 à 36 250	0	1	1	0	1	1	1	1	1	0	0
36 250 à 36 350	0	1	1	0	1	1	1	0	1	0	0
36 350 à 36 450	0	1	1	0	1	1	1	0	1	1	0
36 450 à 36 550	0	1	1	0	1	1	1	0	0	1	0
36 550 à 36 650	0	1	1	0	1	1	1	0	0	1	1
36 650 à 36 750	0	1	1	0	1	1	1	0	0	0	1
36 750 à 36 850	0	1	1	0	1	0	1	0	0	0	1
36 850 à 36 950	0	1	1	0	1	0	1	0	0	1	1
36 950 à 37 050	0	1	1	0	1	0	1	0	0	1	0
37 050 à 37 150	0	1	1	0	1	0	1	0	1	1	0
37 150 à 37 250	0	1	1	0	1	0	1	0	1	0	0
37 250 à 37 350	0	1	1	0	1	0	1	1	1	0	0
37 350 à 37 450	0	1	1	0	1	0	1	1	1	1	0
37 450 à 37 550	0	1	1	0	1	0	1	1	0	1	0
37 550 à 37 650	0	1	1	0	1	0	1	1	0	1	1
37 650 à 37 750	0	1	1	0	1	0	1	1	0	0	1
37 750 à 37 850	0	1	1	0	1	0	0	1	0	0	1
37 850 à 37 950	0	1	1	0	1	0	0	1	0	1	1
37 950 à 38 050	0	1	1	0	1	0	0	1	0	1	0
38 050 à 38 150	0	1	1	0	1	0	0	1	1	1	0
38 150 à 38 250	0	1	1	0	1	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 111 de 133 1 Janvier 2016

					POS	SITION	DES IM	IPULSIO	ONS			
P	LAGE			(0 ou 1	indique	e, pour c	haque p	osition,	respecti	ivement		
				l	'absence	e ou la p	résence	d'une in	npulsioi	1)		
	ERVALLES	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_{4}	C_1	C_2	C_4
	Pieds)		D ₄	7 1		114		D ₂		CI		
	à 38 350	0	1	1	0	1	0	0	0	1	0	0
	à 38 450	0	1	1	0	1	0	0	0	1	1	0
	à 38 550	0	1	1	0	1	0	0	0	0	1	0
	à 38 650	0	1	1	0	1	0	0	0	0	1	1
	à 38 750	0	1	1	0	1	0	0	0	0	0	1
	à 38 850	0	1	1	1	1	0	0	0	0	0	1
	à 38 950	0	1	1	1	1	0	0	0	0	1	1
	à 39 050	0	1	1	1	1	0	0	0	0	1	0
	à 39 150	0	1	1	1	1	0	0	0	1	1	0
	à 39 250	0	1	1	1	1	0	0	0	1	0	0
	à 39 350	0	1	1	1	1	0	0	1	1	0	0
	à 39 450	0	1	1	1	1	0	0	1	1	1	0
	à 39 550	0	1	1	1	1	0	0	1	0	1	0
	à 39 650	0	1	1	1	1	0	0	1	0	1	1
	à 39 750	0	1	1	1	1	0	0	1	0	0	1
	à 39 850	0	1	1	1	1	0	1	1	0	0	1
	à 39 950	0	1	1	1	1	0	1	1	0	1	1
	à 40 050	0	1	1	1	1	0	1	1	0	1	0
	à 40 150	0	1	1	1	1	0	1	1	1	1	0
	à 40 250	0	1	1	1	1	0	1	1	1	0	0
	à 40 350	0	1	1	1	1	0	1	0	1	0	0
	à 40 450	0	1	1	1	1	0	1	0	1	1	0
	à 40 550	0	1	1	1	1	0	1	0	0	1	0
	à 40 650	0	1	1	1	1	0	1	0	0	1	1
	à 40 750	0	1	1	1	1	0	1	0	0	0	1
	à 40 850	0	1	1	1	1	1	1	0	0	0	1
	à 40 950	0	1	1	1	1	1	1	0	0	1	1
	à 41 050	0	1	1	1	1	1	1	0	0	1	0
	à 41 150	0	1	1	1	1	1	1	0	1	1	0
	à 41 250	0	1	1	1	1	1	1	0	1	0	0
	à 41 350	0	1	1	1	1	1	1	1	1	0	0
	à 41 450	0	1	1	1	1	1	1	1	1	1	0
	à 41 550	0	1	1	1	1	1	1	1	0	1	0
	à 41 650	0	1	1	1	1	1	1	1	0	1	1
	à 41 750	0	1	1	1	1	1	1	1	0	0	1
	à 41 850	0	1	1	1	1	1	0	1	0	0	1
	à 41 950	0	1	1	1	1	1	0	1	0	1	1
	à 42 050	0	1	1	1	1	1	0	1	0	1	0
	à 42 150	0	1	1	1	1	1	0	1	1	1	0
42 150	à 42 250	0	1	1	1	1	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 112 de 133 1 Janvier 2016

				POS	SITION	DES IM	PULSIO	ONS			
PLAGE			,			chaque p					
			l	'absence	e ou la p	résence	d'une ir	npulsion	n)		
INTERVALLES	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_{4}	C_1	C_2	C_4
(Pieds)											
42 250 à 42 350	0	1	1	1	1	1	0	0	1	0	0
42 350 à 42 450	0	1	1	1	1	1	0	0	1	1	0
42 450 à 42 550	0	1	1	1	1	1	0	0	0	1	0
42 550 à 42 650	0	1	1	1	1	1	0	0	0	1	1
42 650 à 42 750	0	1	1	1	1	1	0	0	0	0	1
42 750 à 42 850	0	1	1	1	0	1	0	0	0	0	1
42 850 à 42 950	0	1	1	1	0	1	0	0	0	1	1
42 950 à 43 050	0	1	1	1	0	1	0	0	0	1	0
43 050 à 43 150	0	1	1	1	0	1	0	0	1	1	0
43 150 à 43 250	0	1	1	1	0	1	0	0	1	0	0
43 250 à 43 350	0	1	1	1	0	1	0	1	1	0	0
43 350 à 43 450	0	1	1	1	0	1	0	1	1	1	0
43 450 à 43 550	0	1	1	1	0	1	0	1	0	1	0
43 550 à 43 650	0	1	1	1	0	1	0	1	0	1	1
43 650 à 43 750	0	1	1	1	0	1	0	1	0	0	1
43 750 à 43 850	0	1	1	1	0	1	1	1	0	0	1
43 850 à 43 950	0	1	1	1	0	1	1	1	0	1	1
43 950 à 44 050	0	1	1	1	0	1	1	1	0	1	0
44 050 à 44 150	0	1	1	1	0	1	1	1	1	1	0
44 150 à 44 250	0	1	1	1	0	1	1	1	1	0	0
44 250 à 44 350	0	1	1	1	0	1	1	0	1	0	0
44 350 à 44 450	0	1	1	1	0	1	1	0	1	1	0
44 450 à 44 550	0	1	1	1	0	1	1	0	0	1	0
44 550 à 44 650	0	1	1	1	0	1	1	0	0	1	1
44 650 à 44 750	0	1	1	1	0	1	1	0	0	0	1
44 750 à 44 850	0	1	1	1	0	0	1	0	0	0	1
44 850 à 44 950	0	1	1	1	0	0	1	0	0	1	1
44 950 à 45 050	0	1	1	1	0	0	1	0	0	1	0
45 050 à 45 150	0	1	1	1	0	0	1	0	1	1	0
45 150 à 45 250	0	1	1	1	0	0	1	0	1	0	0
45 250 à 45 350	0	1	1	1	0	0	1	1	1	0	0
45 350 à 45 450	0	1	1	1	0	0	1	1	1	1	0
45 450 à 45 550	0	1	1	1	0	0	1	1	0	1	0
45 550 à 45 650	0	1	1	1	0	0	1	1	0	1	1
45 650 à 45 750	0	1	1	1	0	0	1	1	0	0	1
45 750 à 45 850	0	1	1	1	0	0	0	1	0	0	1
45 850 à 45 950	0	1	1	1	0	0	0	1	0	1	1
45 950 à 46 050	0	1	1	1	0	0	0	1	0	1	0
46 050 à 46 150	0	1	1	1	0	0	0	1	1	1	0
46 150 à 46 250	0	1	1	1	0	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 113 de 133 1 Janvier 2016

				POS	SITION	DES IM	PULSI	ONS			
PLAGE			,			chaque p					
			l	'absence	e ou la p	résence	d'une ii	mpulsion	1)		
INTERVALLES	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_{4}	C_1	C_2	C_4
(Pieds)											-
46 250 à 46 350	0	1	1	1	0	0	0	0	1	0	0
46 350 à 46 450	0	1	1	1	0	0	0	0	1	1	0
46 450 à 46 550	0	1	1	1	0	0	0	0	0	1	0
46 550 à 46 650	0	1	1	1	0	0	0	0	0	1	1
46 650 à 46 750	0	1	1	1	0	0	0	0	0	0	1
46 750 à 46 850	0	1	0	1	0	0	0	0	0	0	1
46 850 à 46 950	0	1	0	1	0	0	0	0	0	1	1
46 950 à 47 050	0	1	0	1	0	0	0	0	0	1	0
47 050 à 47 150	0	1	0	1	0	0	0	0	1	1	0
47 150 à 47 250	0	1	0	1	0	0	0	0	1	0	0
47 250 à 47 350	0	1	0	1	0	0	0	1	1	0	0
47 350 à 47 450	0	1	0	1	0	0	0	1	1	1	0
47 450 à 47 550	0	1	0	1	0	0	0	1	0	1	0
47 550 à 47 650	0	1	0	1	0	0	0	1	0	1	1
47 650 à 47 750	0	1	0	1	0	0	0	1	0	0	1
47 750 à 47 850	0	1	0	1	0	0	1	1	0	0	1
47 850 à 47 950	0	1	0	1	0	0	1	1	0	1	1
47 950 à 48 050	0	1	0	1	0	0	1	1	0	1	0
48 050 à 48 150	0	1	0	1	0	0	1	1	1	1	0
48 150 à 48 250	0	1	0	1	0	0	1	1	1	0	0
48 250 à 48 350	0	1	0	1	0	0	1	0	1	0	0
48 350 à 48 450	0	1	0	1	0	0	1	0	1	1	0
48 450 à 48 550	0	1	0	1	0	0	1	0	0	1	0
48 550 à 48 650	0	1	0	1	0	0	1	0	0	1	1
48 650 à 48 750	0	1	0	1	0	0	1	0	0	0	1
48 750 à 48 850	0	1	0	1	0	1	1	0	0	0	1
48 850 à 48 950	0	1	0	1	0	1	1	0	0	1	1
48 950 à 49 050	0	1	0	1	0	1	1	0	0	1	0
49 050 à 49 150	0	1	0	1	0	1	1	0	1	1	0
49 150 à 49 250	0	1	0	1	0	1	1	0	1	0	0
49 250 à 49 350	0	1	0	1	0	1	1	1	1	0	0
49 350 à 49 450	0	1	0	1	0	1	1	1	1	1	0
49 450 à 49 550	0	1	0	1	0	1	1	1	0	1	0
49 550 à 49 650	0	1	0	1	0	1	1	1	0	1	1
49 650 à 49 750	0	1	0	1	0	1	1	1	0	0	1
49 750 à 49 850	0	1	0	1	0	1	0	1	0	0	1
49 850 à 49 950	0	1	0	1	0	1	0	1	0	1	1
49 950 à 50 050	0	1	0	1	0	1	0	1	0	1	0
50 050 à 50 150	0	1	0	1	0	1	0	1	1	1	0
50 150 à 50 250	0	1	0	1	0	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 114 de 133 1 Janvier 2016

				POS	SITION	DES IM	PULSI	ONS			
PLAGE				-		chaque p		-			
			l	'absence	e ou la p	résence	d'une ii	mpulsion	1)		
INTERVALLES	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_{4}	C_1	C_2	C_4
(Pieds)			•								
50 250 à 50 350	0	1	0	1	0	1	0	0	1	0	0
50 350 à 50 450	0	1	0	1	0	1	0	0	1	1	0
50 450 à 50 550	0	1	0	1	0	1	0	0	0	1	0
50 550 à 50 650	0	1	0	1	0	1	0	0	0	1	1
50 650 à 50 750	0	1	0	1	0	1	0	0	0	0	1
50 750 à 50 850	0	1	0	1	1	1	0	0	0	0	1
50 850 à 50 950	0	1	0	1	1	1	0	0	0	1	1
50 950 à 51 050	0	1	0	1	1	1	0	0	0	1	0
51 050 à 51 150	0	1	0	1	1	1	0	0	1	1	0
51 150 à 51 250	0	1	0	1	1	1	0	0	1	0	0
51 250 à 51 350	0	1	0	1	1	1	0	1	1	0	0
51 350 à 51 450	0	1	0	1	1	1	0	1	1	1	0
51 450 à 51 550	0	1	0	1	1	1	0	1	0	1	0
51 550 à 51 650	0	1	0	1	1	1	0	1	0	1	1
51 650 à 51 750	0	1	0	1	1	1	0	1	0	0	1
51 750 à 51 850	0	1	0	1	1	1	1	1	0	0	1
51 850 à 51 950	0	1	0	1	1	1	1	1	0	1	1
51 950 à 52 050	0	1	0	1	1	1	1	1	0	1	0
52 050 à 52 150	0	1	0	1	1	1	1	1	1	1	0
52 150 à 52 250	0	1	0	1	1	1	1	1	1	0	0
52 250 à 52 350	0	1	0	1	1	1	1	0	1	0	0
52 350 à 52 450	0	1	0	1	1	1	1	0	1	1	0
52 450 à 52 550	0	1	0	1	1	1	1	0	0	1	0
52 550 à 52 650	0	1	0	1	1	1	1	0	0	1	1
52 650 à 52 750	0	1	0	1	1	1	1	0	0	0	1
52 750 à 52 850	0	1	0	1	1	0	1	0	0	0	1
52 850 à 52 950	0	1	0	1	1	0	1	0	0	1	1
52 950 à 53 050	0	1	0	1	1	0	1	0	0	1	0
53 050 à 53 150	0	1	0	1	1	0	1	0	1	1	0
53 150 à 53 250	0	1	0	1	1	0	1	0	1	0	0
53 250 à 53 350	0	1	0	1	1	0	1	1	1	0	0
53 350 à 53 450	0	1	0	1	1	0	1	1	1	1	0
53 450 à 53 550	0	1	0	1	1	0	1	1	0	1	0
53 550 à 53 650	0	1	0	1	1	0	1	1	0	1	1
53 650 à 53 750	0	1	0	1	1	0	1	1	0	0	1
53 750 à 53 850	0	1	0	1	1	0	0	1	0	0	1
53 850 à 53 950	0	1	0	1	1	0	0	1	0	1	1
53 950 à 54 050	0	1	0	1	1	0	0	1	0	1	0
54 050 à 54 150	0	1	0	1	1	0	0	1	1	1	0
54 150 à 54 250	0	1	0	1	1	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 115 de 133 1 Janvier 2016

PI AGE					SITION						
PLAGE				-	e, pour c			-			
Intervalles			ι	absence	e ou la p	resence	a une ii	npuisior	1)		
(Pieds)	D_2	D_4	\mathbf{A}_1	\mathbf{A}_2	A_4	\mathbf{B}_1	\mathbf{B}_2	B_4	C_1	C_2	C_4
54 250 à 54 350	0	1	0	1	1	0	0	0	1	0	0
54 350 à 54 450	0	1	0	1	1	0	0	0	1	1	0
54 450 à 54 550	0	1	0	1	1	0	0	0	0	1	0
54 550 à 54 650	0	1	0	1	1	0	0	0	0	1	1
54 650 à 54 750	0	1	0	1	1	0	0	0	0	0	1
54 750 à 54 850	0	1	0	0	1	0	0	0	0	0	1
54 850 à 54 950	0	1	0	0	1	0	0	0	0	1	1
54 950 à 55 050	0	1	0	0	1	0	0	0	0	1	0
55 050 à 55 150	0	1	0	0	1	0	0	0	1	1	0
55 150 à 55 250	0	1	0	0	1	0	0	0	1	0	0
55 250 à 55 350	0	1	0	0	1	0	0	1	1	0	0
55 350 à 55 450	0	1	0	0	1	0	0	1	1	1	0
55 450 à 55 550	0	1	0	0	1	0	0	1	0	1	0
55 550 à 55 650	0	1	0	0	1	0	0	1	0	1	1
55 650 à 55 750	0	1	0	0	1	0	0	1	0	0	1
55 750 à 55 850	0	1	0	0	1	0	1	1	0	0	1
55 850 à 55 950	0	1	0	0	1	0	1	1	0	1	1
55 950 à 56 050	0	1	0	0	1	0	1	1	0	1	0
56 050 à 56 150	0	1	0	0	1	0	1	1	1	1	0
56 150 à 56 250	0	1	0	0	1	0	1	1	1	0	0
56 250 à 56 350	0	1	0	0	1	0	1	0	1	0	0
56 350 à 56 450	0	1	0	0	1	0	1	0	1	1	0
56 450 à 56 550	0	1	0	0	1	0	1	0	0	1	0
56 550 à 56 650	0	1	0	0	1	0	1	0	0	1	1
56 650 à 56 750	0	1	0	0	1	0	1	0	0	0	1
56 750 à 56 850	0	1	0	0	1	1	1	0	0	0	1
56 850 à 56 950	0	1	0	0	1	1	1	0	0	1	1
56 950 à 57 050	0	1	0	0	1	1	1	0	0	1	0
57 050 à 57 150	0	1	0	0	1	1	1	0	1	1	0
57 150 à 57 250	0	1	0	0	1	1	1	0	1	0	0
57 250 à 57 350	0	1	0	0	1	1	1	1	1	0	0
57 350 à 57 450	0	1	0	0	1	1	1	1	1	1	0
57 450 à 57 550	0	1	0	0	1	1	1	1	0	1	0
57 550 à 57 650	0	1	0	0	1	1	1	1	0	1	1
57 650 à 57 750	0	1	0	0	1	1	1	1	0	0	1
57 750 à 57 850	0	1	0	0	1	1	0	1	0	0	1
57 850 à 57 950	0	1	0	0	1	1	0	1	0	1	1
57 950 à 58 050	0	1	0	0	1	1	0	1	0	1	0
58 050 à 58 150	0	1	0	0	1	1	0	1	1	1	0
58 150 à 58 250	0	1	0	0	1	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 116 de 133 1 Janvier 2016

				POS	SITION	DES IM	PULSI	ONS			
PLAGE			(0 ou 1	indique	e, pour c	haque p	osition,	respecti	ivement		
			l	'absence	e ou la p	résence	d'une ii	mpulsior	1)		
INTERVALLES	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	$\mathrm{B}_{\scriptscriptstyle{4}}$	C_1	C_2	C_4
(Pieds)			•								
58 250 à 58 350	0	1	0	0	1	1	0	0	1	0	0
58 350 à 58 450	0	1	0	0	1	1	0	0	1	1	0
58 450 à 58 550	0	1	0	0	1	1	0	0	0	1	0
58 550 à 58 650	0	1	0	0	1	1	0	0	0	1	1
58 650 à 58 750	0	1	0	0	1	1	0	0	0	0	1
58 750 à 58 850	0	1	0	0	0	1	0	0	0	0	1
58 850 à 58 950	0	1	0	0	0	1	0	0	0	1	1
58 950 à 59 050	0	1	0	0	0	1	0	0	0	1	0
59 050 à 59 150	0	1	0	0	0	1	0	0	1	1	0
59 150 à 59 250	0	1	0	0	0	1	0	0	1	0	0
59 250 à 59 350	0	1	0	0	0	1	0	1	1	0	0
59 350 à 59 450	0	1	0	0	0	1	0	1	1	1	0
59 450 à 59 550	0	1	0	0	0	1	0	1	0	1	0
59 550 à 59 650	0	1	0	0	0	1	0	1	0	1	1
59 650 à 59 750	0	1	0	0	0	1	0	1	0	0	1
59 750 à 59 850	0	1	0	0	0	1	1	1	0	0	1
59 850 à 59 950	0	1	0	0	0	1	1	1	0	1	1
59 950 à 60 050	0	1	0	0	0	1	1	1	0	1	0
60 050 à 60 150	0	1	0	0	0	1	1	1	1	1	0
60 150 à 60 250	0	1	0	0	0	1	1	1	1	0	0
60 250 à 60 350	0	1	0	0	0	1	1	0	1	0	0
60 350 à 60 450	0	1	0	0	0	1	1	0	1	1	0
60 450 à 60 550	0	1	0	0	0	1	1	0	0	1	0
60 550 à 60 650	0	1	0	0	0	1	1	0	0	1	1
60 650 à 60 750	0	1	0	0	0	1	1	0	0	0	1
60 750 à 60 850	0	1	0	0	0	0	1	0	0	0	1
60 850 à 60 950	0	1	0	0	0	0	1	0	0	1	1
60 950 à 61 050	0	1	0	0	0	0	1	0	0	1	0
61 050 à 61 150	0	1	0	0	0	0	1	0	1	1	0
61 150 à 61 250	0	1	0	0	0	0	1	0	1	0	0
61 250 à 61 350	0	1	0	0	0	0	1	1	1	0	0
61 350 à 61 450	0	1	0	0	0	0	1	1	1	1	0
61 450 à 61 550	0	1	0	0	0	0	1	1	0	1	0
61 550 à 61 650	0	1	0	0	0	0	1	1	0	1	1
61 650 à 61 750	0	1	0	0	0	0	1	1	0	0	1
61 750 à 61 850	0	1	0	0	0	0	0	1	0	0	1
61 850 à 61 950	0	1	0	0	0	0	0	1	0	1	1
61 950 à 62 050	0	1	0	0	0	0	0	1	0	1	0
62 050 à 62 150	0	1	0	0	0	0	0	1	1	1	0
62 150 à 62 250	0	1	0	0	0	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 117 de 133 1 Janvier 2016

				POS	SITION	DES IM	IPULSI	ONS			
PLAGE								respecti			
			l	'absence	e ou la p	résence	d'une ii	mpulsion	1)		
Intervalles (Pieds)	D_2	D_4	\mathbf{A}_1	A_2	A_4	\mathbf{B}_1	\mathbf{B}_2	B_4	\mathbf{C}_1	C_2	C_4
62 250 à 62 350	0	1	0	0	0	0	0	0	1	0	0
62 350 à 62 450	0	1	0	0	0	0	0	0	1	1	0
62 450 à 62 550	0	1	0	0	0	0	0	0	0	1	0
62 550 à 62 650	0	1	0	0	0	0	0	0	0	1	1
62 650 à 62 750	0	1	0	0	0	0	0	0	0	0	1
62 750 à 62 850	1	1	0	0	0	0	0	0	0	0	1
62 850 à 62 950	1	1	0	0	0	0	0	0	0	1	1
62 950 à 63 050	1	1	0	0	0	0	0	0	0	1	0
63 050 à 63 150	1	1	0	0	0	0	0	0	1	1	0
63 150 à 63 250	1	1	0	0	0	0	0	0	1	0	0
63 250 à 63 350	1	1	0	0	0	0	0	1	1	0	0
63 350 à 63 450	1	1	0	0	0	0	0	1	1	1	0
63 450 à 63 550	1	1	0	0	0	0	0	1	0	1	0
63 550 à 63 650	1	1	0	0	0	0	0	1	0	1	1
63 650 à 63 750	1	1	0	0	0	0	0	1	0	0	1
63 750 à 63 850	1	1	0	0	0	0	1	1	0	0	1
63 850 à 63 950	1	1	0	0	0	0	1	1	0	1	1
63 950 à 64 050	1	1	0	0	0	0	1	1	0	1	0
64 050 à 64 150	1	1	0	0	0	0	1	1	1	1	0
64 150 à 64 250	1	1	0	0	0	0	1	1	1	0	0
64 250 à 64 350	1	1	0	0	0	0	1	0	1	0	0
64 350 à 64 450	1	1	0	0	0	0	1	0	1	1	0
64 450 à 64 550	1	1	0	0	0	0	1	0	0	1	0
64 550 à 64 650	1	1	0	0	0	0	1	0	0	1	1
64 650 à 64 750	1	1	0	0	0	0	1	0	0	0	1
64 750 à 64 850	1	1	0	0	0	1	1	0	0	0	1
64 850 à 64 950	1	1	0	0	0	1	1	0	0	1	1
64 950 à 65 050	1	1	0	0	0	1	1	0	0	1	0
65 050 à 65 150	1	1	0	0	0	1	1	0	1	1	0
65 150 à 65 250	1	1	0	0	0	1	1	0	1	0	0
65 250 à 65 350	1	1	0	0	0	1	1	1	1	0	0
65 350 à 65 450	1	1	0	0	0	1	1	1	1	1	0
65 450 à 65 550	1	1	0	0	0	1	1	1	0	1	0
65 550 à 65 650	1	1	0	0	0	1	1	1	0	1	1
65 650 à 65 750	1	1	0	0	0	1	1	1	0	0	1
65 750 à 65 850	1	1	0	0	0	1	0	1	0	0	1
65 850 à 65 950	1	1	0	0	0	1	0	1	0	1	1
65 950 à 66 050	1	1	0	0	0	1	0	1	0	1	0
66 050 à 66 150	1	1	0	0	0	1	0	1	1	1	0
66 150 à 66 250	1	1	0	0	0	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 118 de 133 1 Janvier 2016

				POS	SITION	DES IM	IPULSI	ONS			
PLAGE			,			chaque p					
			l	'absence	e ou la p	résence	d'une ii	npulsior	1)		
INTERVALLES	D_2	D_4	A_1	A_2	A_4	B_1	B_2	B_4	C_1	C_2	C_4
(Pieds)	D ₂	D ₄		112		D ₁		D ₄	CI		C ₄
66 250 à 66 350	1	1	0	0	0	1	0	0	1	0	0
66 350 à 66 450	1	1	0	0	0	1	0	0	1	1	0
66 450 à 66 550	1	1	0	0	0	1	0	0	0	1	0
66 550 à 66 650	1	1	0	0	0	1	0	0	0	1	1
66 650 à 66 750	1	1	0	0	0	1	0	0	0	0	1
66 750 à 66 850	1	1	0	0	1	1	0	0	0	0	1
66 850 à 66 950	1	1	0	0	1	1	0	0	0	1	1
66 950 à 67 050	1	1	0	0	1	1	0	0	0	1	0
67 050 à 67 150	1	1	0	0	1	1	0	0	1	1	0
67 150 à 67 250	1	1	0	0	1	1	0	0	1	0	0
67 250 à 67 350	1	1	0	0	1	1	0	1	1	0	0
67 350 à 67 450	1	1	0	0	1	1	0	1	1	1	0
67 450 à 67 550	1	1	0	0	1	1	0	1	0	1	0
67 550 à 67 650	1	1	0	0	1	1	0	1	0	1	1
67 650 à 67 750	1	1	0	0	1	1	0	1	0	0	1
67 750 à 67 850	1	1	0	0	1	1	1	1	0	0	1
67 850 à 67 950	1	1	0	0	1	1	1	1	0	1	1
67 950 à 68 050	1	1	0	0	1	1	1	1	0	1	0
68 050 à 68 150	1	1	0	0	1	1	1	1	1	1	0
68 150 à 68 250	1	1	0	0	1	1	1	1	1	0	0
68 250 à 68 350	1	1	0	0	1	1	1	0	1	0	0
68 350 à 68 450	1	1	0	0	1	1	1	0	1	1	0
68 450 à 68 550	1	1	0	0	1	1	1	0	0	1	0
68 550 à 68 650	1	1	0	0	1	1	1	0	0	1	1
68 650 à 68 750	1	1	0	0	1	1	1	0	0	0	1
68 750 à 68 850	1	1	0	0	1	0	1	0	0	0	1
68 850 à 68 950	1	1	0	0	1	0	1	0	0	1	1
68 950 à 69 050	1	1	0	0	1	0	1	0	0	1	0
69 050 à 69 150	1	1	0	0	1	0	1	0	1	1	0
69 150 à 69 250	1	1	0	0	1	0	1	0	1	0	0
69 250 à 69 350	1	1	0	0	1	0	1	1	1	0	0
69 350 à 69 450	1	1	0	0	1	0	1	1	1	1	0
69 450 à 69 550	1	1	0	0	1	0	1	1	0	1	0
69 550 à 69 650	1	1	0	0	1	0	1	1	0	1	1
69 650 à 69 750	1	1	0	0	1	0	1	1	0	0	1
69 750 à 69 850	1	1	0	0	1	0	0	1	0	0	1
69 850 à 69 950	1	1	0	0	1	0	0	1	0	1	1
69 950 à 70 050	1	1	0	0	1	0	0	1	0	1	0
70 050 à 70 150	1	1	0	0	1	0	0	1	1	1	0
70 150 à 70 250	1	1	0	0	1	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 119 de 133 1 Janvier 2016

PLA	GE				l indique	SITION e, pour c e ou la p	chaque p	osition,	respecti			
INTERV (Pie		D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	C_1	C_2	C_4
70 250 à	70 350	1	1	0	0	1	0	0	0	1	0	0
70 350 à	70 450	1	1	0	0	1	0	0	0	1	1	0
70 450 à	70 550	1	1	0	0	1	0	0	0	0	1	0
70 550 à	70 650	1	1	0	0	1	0	0	0	0	1	1
70 650 à	70 750	1	1	0	0	1	0	0	0	0	0	1
70 750 à	70 850	1	1	0	1	1	0	0	0	0	0	1
70 850 à	70 950	1	1	0	1	1	0	0	0	0	1	1
70 950 à	71 050	1	1	0	1	1	0	0	0	0	1	0
71 050 à	71 150	1	1	0	1	1	0	0	0	1	1	0
71 150 à	71 250	1	1	0	1	1	0	0	0	1	0	0
71 250 à	71 350	1	1	0	1	1	0	0	1	1	0	0
71 350 à	71 450	1	1	0	1	1	0	0	1	1	1	0
71 450 à	71 550	1	1	0	1	1	0	0	1	0	1	0
71 550 à	71 650	1	1	0	1	1	0	0	1	0	1	1
71 650 à	71 750	1	1	0	1	1	0	0	1	0	0	1
71 750 à	71 850	1	1	0	1	1	0	1	1	0	0	1
71 850 à	71 950	1	1	0	1	1	0	1	1	0	1	1
71 950 à	72 050	1	1	0	1	1	0	1	1	0	1	0
72 050 à	72 150	1	1	0	1	1	0	1	1	1	1	0
72 150 à	72 250	1	1	0	1	1	0	1	1	1	0	0
72 250 à	72 350	1	1	0	1	1	0	1	0	1	0	0
72 350 à	72 450	1	1	0	1	1	0	1	0	1	1	0
72 450 à	72 550	1	1	0	1	1	0	1	0	0	1	0
72 550 à	72 650	1	1	0	1	1	0	1	0	0	1	1
72 650 à	72 750	1	1	0	1	1	0	1	0	0	0	1
72 750 à	72 850	1	1	0	1	1	1	1	0	0	0	1
72 850 à	72 950	1	1	0	1	1	1	1	0	0	1	1
72 950 à	73 050	1	1	0	1	1	1	1	0	0	1	0
73 050 à	73 150	1	1	0	1	1	1	1	0	1	1	0
73 150 à	73 250	1	1	0	1	1	1	1	0	1	0	0
73 250 à	73 350	1	1	0	1	1	1	1	1	1	0	0
73 350 à	73 450	1	1	0	1	1	1	1	1	1	1	0
73 450 à	73 550	1	1	0	1	1	1	1	1	0	1	0
73 550 à	73 650	1	1	0	1	1	1	1	1	0	1	1
73 650 à	73 750	1	1	0	1	1	1	1	1	0	0	1
73 750 à	73 850	1	1	0	1	1	1	0	1	0	0	1
73 850 à	73 950	1	1	0	1	1	1	0	1	0	1	1
73 950 à	74 050	1	1	0	1	1	1	0	1	0	1	0
74 050 à	74 150	1	1	0	1	1	1	0	1	1	1	0
74 150 à	74 250	1	1	0	1	1	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 120 de 133 1 Janvier 2016

I	PLAGE Intervalles					indique	e, pour c	DES IM chaque p orésence	osition,	respecti			
	ERVA (Pied:		D_2	D_4	\mathbf{A}_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	C_1	C_2	C_4
74 250	à	74 350	1	1	0	1	1	1	0	0	1	0	0
74 350	à	74 450	1	1	0	1	1	1	0	0	1	1	0
74 450	à	74 550	1	1	0	1	1	1	0	0	0	1	0
74 550	à	74 650	1	1	0	1	1	1	0	0	0	1	1
74 650	à	74 750	1	1	0	1	1	1	0	0	0	0	1
74 750	à	74 850	1	1	0	1	0	1	0	0	0	0	1
74 850	à	74 950	1	1	0	1	0	1	0	0	0	1	1
74 950	à	75 050	1	1	0	1	0	1	0	0	0	1	0
75 050	à	75 150	1	1	0	1	0	1	0	0	1	1	0
75 150	à	75 250	1	1	0	1	0	1	0	0	1	0	0
75 250	à	75 350	1	1	0	1	0	1	0	1	1	0	0
75 350	à	75 450	1	1	0	1	0	1	0	1	1	1	0
75 450	à	75 550	1	1	0	1	0	1	0	1	0	1	0
75 550	à	75 650	1	1	0	1	0	1	0	1	0	1	1
75 650	à	75 750	1	1	0	1	0	1	0	1	0	0	1
75 750	à	75 850	1	1	0	1	0	1	1	1	0	0	1
75 850	à	75 950	1	1	0	1	0	1	1	1	0	1	1
75 950	à	76 050	1	1	0	1	0	1	1	1	0	1	0
76 050	à	76 150	1	1	0	1	0	1	1	1	1	1	0
76 150	à	76 250	1	1	0	1	0	1	1	1	1	0	0
76 250	à	76 350	1	1	0	1	0	1	1	0	1	0	0
76 350	à	76 450	1	1	0	1	0	1	1	0	1	1	0
76 450	à	76 550	1	1	0	1	0	1	1	0	0	1	0
76 550	à	76 650	1	1	0	1	0	1	1	0	0	1	1
76 650	à	76 750	1	1	0	1	0	1	1	0	0	0	1
76 750	à	76 850	1	1	0	1	0	0	1	0	0	0	1
76 850	à	76 950	1	1	0	1	0	0	1	0	0	1	1
76 950	à	77 050	1	1	0	1	0	0	1	0	0	1	0
77 050	à	77 150	1	1	0	1	0	0	1	0	1	1	0
77 150	à	77 250	1	1	0	1	0	0	1	0	1	0	0
77 250	à	77 350	1	1	0	1	0	0	1	1	1	0	0
77 350	à	77 450	1	1	0	1	0	0	1	1	1	1	0
77 450	à	77 550	1	1	0	1	0	0	1	1	0	1	0
77 550	à	77 650	1	1	0	1	0	0	1	1	0	1	1
77 650	à	77 750	1	1	0	1	0	0	1	1	0	0	1
77 750	à	77 850	1	1	0	1	0	0	0	1	0	0	1
77 850	à	77 950	1	1	0	1	0	0	0	1	0	1	1
77 950	à	78 050	1	1	0	1	0	0	0	1	0	1	0
78 050	à	78 150	1	1	0	1	0	0	0	1	1	1	0
78 150	à	78 250	1	1	0	1	0	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 121 de 133 1 Janvier 2016

PL.	AGE				POS l indique l'absence	e, pour c		osition,	respecti			
	EVALLES ieds)	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	C_1	C_2	C_4
78 250 à	78 350	1	1	0	1	0	0	0	0	1	0	0
78 350 à	78 450	1	1	0	1	0	0	0	0	1	1	0
78 450 à	78 550	1	1	0	1	0	0	0	0	0	1	0
78 550 à	78 650	1	1	0	1	0	0	0	0	0	1	1
78 650 à	78 750	1	1	0	1	0	0	0	0	0	0	1
78 750 à	78 850	1	1	1	1	0	0	0	0	0	0	1
78 850 à	78 950	1	1	1	1	0	0	0	0	0	1	1
78 950 à	79 050	1	1	1	1	0	0	0	0	0	1	0
79 050 à	79 150	1	1	1	1	0	0	0	0	1	1	0
79 150 à	79 250	1	1	1	1	0	0	0	0	1	0	0
79 250 à	79 350	1	1	1	1	0	0	0	1	1	0	0
79 350 à	79 450	1	1	1	1	0	0	0	1	1	1	0
79 450 à	79 550	1	1	1	1	0	0	0	1	0	1	0
79 550 à	79 650	1	1	1	1	0	0	0	1	0	1	1
79 650 à	79 750	1	1	1	1	0	0	0	1	0	0	1
79 750 à	79 850	1	1	1	1	0	0	1	1	0	0	1
79 850 à	79 950	1	1	1	1	0	0	1	1	0	1	1
79 950 à	80 050	1	1	1	1	0	0	1	1	0	1	0
80 050 à	80 150	1	1	1	1	0	0	1	1	1	1	0
80 150 à	80 250	1	1	1	1	0	0	1	1	1	0	0
80 250 à	80 350	1	1	1	1	0	0	1	0	1	0	0
80 350 à	80 450	1	1	1	1	0	0	1	0	1	1	0
80 450 à		1	1	1	1	0	0	1	0	0	1	0
80 550 à		1	1	1	1	0	0	1	0	0	1	1
80 650 à		1	1	1	1	0	0	1	0	0	0	1
80 750 à		1	1	1	1	0	1	1	0	0	0	1
80 850 à		1	1	1	1	0	1	1	0	0	1	1
80 950 à		1	1	1	1	0	1	1	0	0	1	0
81 050 à		1	1	1	1	0	1	1	0	1	1	0
81 150 à		1	1	1	1	0	1	1	0	1	0	0
81 250 à		1	1	1	1	0	1	1	1	1	0	0
81 350 à		1	1	1	1	0	1	1	1	1	1	0
81 450 à		1	1	1	1	0	1	1	1	0	1	0
81 550 à		1	1	1	1	0	1	1	1	0	1	1
81 650 à		1	1	1	1	0	1	1	1	0	0	1
81 750 à		1	1	1	1	0	1	0	1	0	0	1
81 850 à		1	1	1	1	0	1	0	1	0	1	1
81 950 à		1	1	1	1	0	1	0	1	0	1	0
82 050 à		1	1	1	1	0	1	0	1	1	1	0
82 150 à	82 250	1	1	1	1	0	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 122 de 133 1 Janvier 2016

				POS	SITION	DES IM	PULSIO	ONS			
PLAGE						chaque p					
			l	'absence	e ou la p	résence	d'une ir	npulsion	n)		
INTERVALLES	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_{4}	C_1	C_2	C_4
(Pieds)											
82 250 à 82 350	1	1	1	1	0	1	0	0	1	0	0
82 350 à 82 450	1	1	1	1	0	1	0	0	1	1	0
82 450 à 82 550	1	1	1	1	0	1	0	0	0	1	0
82 550 à 82 650	1	1	1	1	0	1	0	0	0	1	1
82 650 à 82 750	1	1	1	1	0	1	0	0	0	0	1
82 750 à 82 850	1	1	1	1	1	1	0	0	0	0	1
82 850 à 82 950	1	1	1	1	1	1	0	0	0	1	1
82 950 à 83 050	1	1	1	1	1	1	0	0	0	1	0
83 050 à 83 150	1	1	1	1	1	1	0	0	1	1	0
83 150 à 83 250	1	1	1	1	1	1	0	0	1	0	0
83 250 à 83 350	1	1	1	1	1	1	0	1	1	0	0
83 350 à 83 450	1	1	1	1	1	1	0	1	1	1	0
83 450 à 83 550	1	1	1	1	1	1	0	1	0	1	0
83 550 à 83 650	1	1	1	1	1	1	0	1	0	1	1
83 650 à 83 750	1	1	1	1	1	1	0	1	0	0	1
83 750 à 83 850	1	1	1	1	1	1	1	1	0	0	1
83 850 à 83 950	1	1	1	1	1	1	1	1	0	1	1
83 950 à 84 050	1	1	1	1	1	1	1	1	0	1	0
84 050 à 84 150	1	1	1	1	1	1	1	1	1	1	0
84 150 à 84 250	1	1	1	1	1	1	1	1	1	0	0
84 250 à 84 350	1	1	1	1	1	1	1	0	1	0	0
84 350 à 84 450	1	1	1	1	1	1	1	0	1	1	0
84 450 à 84 550	1	1	1	1	1	1	1	0	0	1	0
84 550 à 84 650	1	1	1	1	1	1	1	0	0	1	1
84 650 à 84 750	1	1	1	1	1	1	1	0	0	0	1
84 750 à 84 850	1	1	1	1	1	0	1	0	0	0	1
84 850 à 84 950	1	1	1	1	1	0	1	0	0	1	1
84 950 à 85 050	1	1	1	1	1	0	1	0	0	1	0
85 050 à 85 150	1	1	1	1	1	0	1	0	1	1	0
85 150 à 85 250	1	1	1	1	1	0	1	0	1	0	0
85 250 à 85 350	1	1	1	1	1	0	1	1	1	0	0
85 350 à 85 450	1	1	1	1	1	0	1	1	1	1	0
85 450 à 85 550	1	1	1	1	1	0	1	1	0	1	0
85 550 à 85 650	1	1	1	1	1	0	1	1	0	1	1
85 650 à 85 750	1	1	1	1	1	0	1	1	0	0	1
85 750 à 85 850	1	1	1	1	1	0	0	1	0	0	1
85 850 à 85 950	1	1	1	1	1	0	0	1	0	1	1
85 950 à 86 050	1	1	1	1	1	0	0	1	0	1	0
86 050 à 86 150	1	1	1	1	1	0	0	1	1	1	0
86 150 à 86 250	1	1	1	1	1	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 123 de 133 1 Janvier 2016

	POSITION DES IMPULSIONS											
PLAGE				-	-	chaque p		-				
		l'absence ou la présence d'une impulsion)										
INTERVALLES (Pieds)	D_2	D_4	A_1	A_2	A_4	B_1	B_2	B_4	C_1	C_2	C_4	
86 250 à 86 350	1	1	1	1	1	0	0	0	1	0	0	
86 350 à 86 450	1	1	1	1	1	0	0	0	1	1	0	
86 450 à 86 550	1	1	1	1	1	0	0	0	0	1	0	
86 550 à 86 650	1	1	1	1	1	0	0	0	0	1	1	
86 650 à 86 750	1	1	1	1	1	0	0	0	0	0	1	
86 750 à 86 850	1	1	1	0	1	0	0	0	0	0	1	
86 850 à 86 950	1	1	1	0	1	0	0	0	0	1	1	
86 950 à 87 050	1	1	1	0	1	0	0	0	0	1	0	
87 050 à 87 150	1	1	1	0	1	0	0	0	1	1	0	
87 150 à 87 250	1	1	1	0	1	0	0	0	1	0	0	
87 250 à 87 350	1	1	1	0	1	0	0	1	1	0	0	
87 350 à 87 450	1	1	1	0	1	0	0	1	1	1	0	
87 450 à 87 550	1	1	1	0	1	0	0	1	0	1	0	
87 550 à 87 650	1	1	1	0	1	0	0	1	0	1	1	
87 650 à 87 750	1	1	1	0	1	0	0	1	0	0	1	
87 750 à 87 850	1	1	1	0	1	0	1	1	0	0	1	
87 850 à 87 950	1	1	1	0	1	0	1	1	0	1	1	
87 950 à 88 050	1	1	1	0	1	0	1	1	0	1	0	
88 050 à 88 150	1	1	1	0	1	0	1	1	1	1	0	
88 150 à 88 250	1	1	1	0	1	0	1	1	1	0	0	
88 250 à 88 350	1	1	1	0	1	0	1	0	1	0	0	
88 350 à 88 450	1	1	1	0	1	0	1	0	1	1	0	
88 450 à 88 550	1	1	1	0	1	0	1	0	0	1	0	
88 550 à 88 650	1	1	1	0	1	0	1	0	0	1	1	
88 650 à 88 750	1	1	1	0	1	0	1	0	0	0	1	
88 750 à 88 850	1	1	1	0	1	1	1	0	0	0	1	
88 850 à 88 950	1	1	1	0	1	1	1	0	0	1	1	
88 950 à 89 050	1	1	1	0	1	1	1	0	0	1	0	
89 050 à 89 150	1	1	1	0	1	1	1	0	1	1	0	
89 150 à 89 250	1	1	1	0	1	1	1	0	1	0	0	
89 250 à 89 350	1	1	1	0	1	1	1	1	1	0	0	
89 350 à 89 450	1	1	1	0	1	1	1	1	1	1	0	
89 450 à 89 550	1	1	1	0	1	1	1	1	0	1	0	
89 550 à 89 650	1	1	1	0	1	1	1	1	0	1	1	
89 650 à 89 750	1	1	1	0	1	1	1	1	0	0	1	
89 750 à 89 850	1	1	1	0	1	1	0	1	0	0	1	
89 850 à 89 950	1	1	1	0	1	1	0	1	0	1	1	
89 950 à 90 050	1	1	1	0	1	1	0	1	0	1	0	
90 050 à 90 150	1	1	1	0	1	1	0	1	1	1	0	
90 150 à 90 250	1	1	1	0	1	1	0	1	1	0	0	

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 124 de 133 1 Janvier 2016

		POSITION DES IMPULSIONS										
PLAGE	(0 ou 1 indique, pour chaque position, respectivement											
	l'absence ou la présence d'une impulsion)											
INTERVA (Pied.		D_2	D_4	\mathbf{A}_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	C_1	C_2	C_4
90 250 à	90 350	1	1	1	0	1	1	0	0	1	0	0
90 350 à	90 450	1	1	1	0	1	1	0	0	1	1	0
90 450 à	90 550	1	1	1	0	1	1	0	0	0	1	0
90 550 à	90 650	1	1	1	0	1	1	0	0	0	1	1
90 650 à	90 750	1	1	1	0	1	1	0	0	0	0	1
90 750 à	90 850	1	1	1	0	0	1	0	0	0	0	1
90 850 à	90 950	1	1	1	0	0	1	0	0	0	1	1
90 950 à	91 050	1	1	1	0	0	1	0	0	0	1	0
91 050 à	91 150	1	1	1	0	0	1	0	0	1	1	0
91 150 à	91 250	1	1	1	0	0	1	0	0	1	0	0
91 250 à	91 350	1	1	1	0	0	1	0	1	1	0	0
91 350 à	91 450	1	1	1	0	0	1	0	1	1	1	0
91 450 à	91 550	1	1	1	0	0	1	0	1	0	1	0
91 550 à	91 650	1	1	1	0	0	1	0	1	0	1	1
91 650 à	91 750	1	1	1	0	0	1	0	1	0	0	1
91 750 à	91 850	1	1	1	0	0	1	1	1	0	0	1
91 850 à	91 950	1	1	1	0	0	1	1	1	0	1	1
91 950 à	92 050	1	1	1	0	0	1	1	1	0	1	0
92 050 à	92 150	1	1	1	0	0	1	1	1	1	1	0
92 150 à	92 250	1	1	1	0	0	1	1	1	1	0	0
92 250 à	92 350	1	1	1	0	0	1	1	0	1	0	0
92 350 à	92 450	1	1	1	0	0	1	1	0	1	1	0
92 450 à	92 550	1	1	1	0	0	1	1	0	0	1	0
92 550 à	92 650	1	1	1	0	0	1	1	0	0	1	1
92 650 à	92 750	1	1	1	0	0	1	1	0	0	0	1
92 750 à	92 850	1	1	1	0	0	0	1	0	0	0	1
92 850 à	92 950	1	1	1	0	0	0	1	0	0	1	1
92 950 à	93 050	1	1	1	0	0	0	1	0	0	1	0
93 050 à	93 150	1	1	1	0	0	0	1	0	1	1	0
93 150 à	93 250	1	1	1	0	0	0	1	0	1	0	0
93 250 à	93 350	1	1	1	0	0	0	1	1	1	0	0
93 350 à	93 450	1	1	1	0	0	0	1	1	1	1	0
93 450 à	93 550	1	1	1	0	0	0	1	1	0	1	0
93 550 à	93 650	1	1	1	0	0	0	1	1	0	1	1
93 650 à	93 750	1	1	1	0	0	0	1	1	0	0	1
93 750 à	93 850	1	1	1	0	0	0	0	1	0	0	1
93 850 à	93 950	1	1	1	0	0	0	0	1	0	1	1
93 950 à	94 050	1	1	1	0	0	0	0	1	0	1	0
94 050 à	94 150	1	1	1	0	0	0	0	1	1	1	0
94 150 à	94 250	1	1	1	0	0	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 125 de 133 1 Janvier 2016

	POSITION DES IMPULSIONS										
PLAGE	(0 ou 1 indique, pour chaque position, respectivement										
	l'absence ou la présence d'une impulsion)										
INTERVALLES	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_{4}	C_1	C_2	C_4
(Pieds)		D4	2 1		2 14						
94 250 à 94 350	1	1	1	0	0	0	0	0	1	0	0
94 350 à 94 450	1	1	1	0	0	0	0	0	1	1	0
94 450 à 94 550	1	1	1	0	0	0	0	0	0	1	0
94 550 à 94 650	1	1	1	0	0	0	0	0	0	1	1
94 650 à 94 750	1	1	1	0	0	0	0	0	0	0	1
94 750 à 94 850	1	0	1	0	0	0	0	0	0	0	1
94 850 à 94 950	1	0	1	0	0	0	0	0	0	1	1
94 950 à 95 050	1	0	1	0	0	0	0	0	0	1	0
95 050 à 95 150	1	0	1	0	0	0	0	0	1	1	0
95 150 à 95 250	1	0	1	0	0	0	0	0	1	0	0
95 250 à 95 350	1	0	1	0	0	0	0	1	1	0	0
95 350 à 95 450	1	0	1	0	0	0	0	1	1	1	0
95 450 à 95 550	1	0	1	0	0	0	0	1	0	1	0
95 550 à 95 650	1	0	1	0	0	0	0	1	0	1	1
95 650 à 95 750	1	0	1	0	0	0	0	1	0	0	1
95 750 à 95 850	1	0	1	0	0	0	1	1	0	0	1
95 850 à 95 950	1	0	1	0	0	0	1	1	0	1	1
95 950 à 96 050	1	0	1	0	0	0	1	1	0	1	0
96 050 à 96 150	1	0	1	0	0	0	1	1	1	1	0
96 150 à 96 250	1	0	1	0	0	0	1	1	1	0	0
96 250 à 96 350	1	0	1	0	0	0	1	0	1	0	0
96 350 à 96 450	1	0	1	0	0	0	1	0	1	1	0
96 450 à 96 550	1	0	1	0	0	0	1	0	0	1	0
96 550 à 96 650	1	0	1	0	0	0	1	0	0	1	1
96 650 à 96 750	1	0	1	0	0	0	1	0	0	0	1
96 750 à 96 850	1	0	1	0	0	1	1	0	0	0	1
96 850 à 96 950	1	0	1	0	0	1	1	0	0	1	1
96 950 à 97 050	1	0	1	0	0	1	1	0	0	1	0
97 050 à 97 150	1	0	1	0	0	1	1	0	1	1	0
97 150 à 97 250	1	0	1	0	0	1	1	0	1	0	0
97 250 à 97 350	1	0	1	0	0	1	1	1	1	0	0
97 350 à 97 450	1	0	1	0	0	1	1	1	1	1	0
97 450 à 97 550	1	0	1	0	0	1	1	1	0	1	0
97 550 à 97 650	1	0	1	0	0	1	1	1	0	1	1
97 650 à 97 750	1	0	1	0	0	1	1	1	0	0	1
97 750 à 97 850	1	0	1	0	0	1	0	1	0	0	1
97 850 à 97 950	1	0	1	0	0	1	0	1	0	1	1
97 950 à 98 050	1	0	1	0	0	1	0	1	0	1	0
98 050 à 98 150	1	0	1	0	0	1	0	1	1	1	0
98 150 à 98 250	1	0	1	0	0	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 126 de 133 1 Janvier 2016

P	PLAGE				POS indique 'absence	e, pour c		osition,	respecti			
	ERVALLES (Pieds)	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	C_1	C_2	C_4
98 250	à 98 350	1	0	1	0	0	1	0	0	1	0	0
98 350	à 98 450	1	0	1	0	0	1	0	0	1	1	0
98 450	à 98 550	1	0	1	0	0	1	0	0	0	1	0
98 550	à 98 650	1	0	1	0	0	1	0	0	0	1	1
98 650	à 98 750	1	0	1	0	0	1	0	0	0	0	1
98 750	à 98 850	1	0	1	0	1	1	0	0	0	0	1
98 850	à 98 950	1	0	1	0	1	1	0	0	0	1	1
98 950	à 99 050	1	0	1	0	1	1	0	0	0	1	0
99 050	à 99 150	1	0	1	0	1	1	0	0	1	1	0
99 150	à 99 250	1	0	1	0	1	1	0	0	1	0	0
99 250	à 99 350	1	0	1	0	1	1	0	1	1	0	0
99 350	à 99 450	1	0	1	0	1	1	0	1	1	1	0
99 450	à 99 550	1	0	1	0	1	1	0	1	0	1	0
99 550	à 99 650	1	0	1	0	1	1	0	1	0	1	1
99 650	à 99 750	1	0	1	0	1	1	0	1	0	0	1
99 750	à 99 850	1	0	1	0	1	1	1	1	0	0	1
99 850	à 99 950	1	0	1	0	1	1	1	1	0	1	1
99 950	à 100 050	1	0	1	0	1	1	1	1	0	1	0
100 050	à 100 150	1	0	1	0	1	1	1	1	1	1	0
100 150	à 100 250	1	0	1	0	1	1	1	1	1	0	0
100 250	à 100 350	1	0	1	0	1	1	1	0	1	0	0
100 350	à 100 450	1	0	1	0	1	1	1	0	1	1	0
	à 100 550	1	0	1	0	1	1	1	0	0	1	0
100 550	à 100 650	1	0	1	0	1	1	1	0	0	1	1
100 650	à 100 750	1	0	1	0	1	1	1	0	0	0	1
100 750	à 100 850	1	0	1	0	1	0	1	0	0	0	1
100 850	à 100 950	1	0	1	0	1	0	1	0	0	1	1
100 950	à 101 050	1	0	1	0	1	0	1	0	0	1	0
101 050	à 101 150	1	0	1	0	1	0	1	0	1	1	0
101 150	à 101 250	1	0	1	0	1	0	1	0	1	0	0
101 250	à 101 350	1	0	1	0	1	0	1	1	1	0	0
101 350	à 101 450	1	0	1	0	1	0	1	1	1	1	0
101 450	à 101 550	1	0	1	0	1	0	1	1	0	1	0
101 550	à 101 650	1	0	1	0	1	0	1	1	0	1	1
101 650	à 101 750	1	0	1	0	1	0	1	1	0	0	1
101 750	à 101 850	1	0	1	0	1	0	0	1	0	0	1
101 850	à 101 950	1	0	1	0	1	0	0	1	0	1	1
101 950	à 102 050	1	0	1	0	1	0	0	1	0	1	0
102 050	à 102 150	1	0	1	0	1	0	0	1	1	1	0
102 150	à 102 250	1	0	1	0	1	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 127 de 133 1 Janvier 2016

	PLA					l indique	SITION e, pour c e ou la p	haque p	osition,	respect			
	ERV. (Pied	ALLES ds)	D_2	D_4	A_1	A_2	A_4	B_1	\mathbf{B}_2	B_4	C_1	C_2	C_4
102 250	à	102 350	1	0	1	0	1	0	0	0	1	0	0
102 350	à	102 450	1	0	1	0	1	0	0	0	1	1	0
102 450	à	102 550	1	0	1	0	1	0	0	0	0	1	0
102 550	à	102 650	1	0	1	0	1	0	0	0	0	1	1
102 650	à	102 750	1	0	1	0	1	0	0	0	0	0	1
102 750	à	102 850	1	0	1	1	1	0	0	0	0	0	1
102 850	à	102 950	1	0	1	1	1	0	0	0	0	1	1
102 950	à	103 050	1	0	1	1	1	0	0	0	0	1	0
103 050	à	103 150	1	0	1	1	1	0	0	0	1	1	0
103 150	à	103 250	1	0	1	1	1	0	0	0	1	0	0
103 250	à	103 350	1	0	1	1	1	0	0	1	1	0	0
103 350	à	103 450	1	0	1	1	1	0	0	1	1	1	0
103 450	à	103 550	1	0	1	1	1	0	0	1	0	1	0
103 550	à	103 650	1	0	1	1	1	0	0	1	0	1	1
103 650	à	103 750	1	0	1	1	1	0	0	1	0	0	1
103 750	à	103 850	1	0	1	1	1	0	1	1	0	0	1
103 850	à	103 950	1	0	1	1	1	0	1	1	0	1	1
103 950	à	104 050	1	0	1	1	1	0	1	1	0	1	0
104 050	à	104 150	1	0	1	1	1	0	1	1	1	1	0
104 150	à	104 250	1	0	1	1	1	0	1	1	1	0	0
104 250	à	104 350	1	0	1	1	1	0	1	0	1	0	0
104 350	à	104 450	1	0	1	1	1	0	1	0	1	1	0
104 450	à	104 550	1	0	1	1	1	0	1	0	0	1	0
104 550	à	104 650	1	0	1	1	1	0	1	0	0	1	1
104 650	à	104 750	1	0	1	1	1	0	1	0	0	0	1
104 750	à	104 850	1	0	1	1	1	1	1	0	0	0	1
104 850	à	104 950	1	0	1	1	1	1	1	0	0	1	1
104 950	à	105 050	1	0	1	1	1	1	1	0	0	1	0
105 050	à	105 150	1	0	1	1	1	1	1	0	1	1	0
105 150	à	105 250	1	0	1	1	1	1	1	0	1	0	0
105 250	à	105 350	1	0	1	1	1	1	1	1	1	0	0
105 350	à	105 450	1	0	1	1	1	1	1	1	1	1	0
105 450	à	105 550	1	0	1	1	1	1	1	1	0	1	0
105 550	à	105 650	1	0	1	1	1	1	1	1	0	1	1
105 650	à	105 750	1	0	1	1	1	1	1	1	0	0	1
105 750	à	105 850	1	0	1	1	1	1	0	1	0	0	1
105 850	à	105 950	1	0	1	1	1	1	0	1	0	1	1
105 950	à	106 050	1	0	1	1	1	1	0	1	0	1	0
106 050	à	106 150	1	0	1	1	1	1	0	1	1	1	0
106 150	à	106 250	1	0	1	1	1	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 128 de 133 1 Janvier 2016

	PLA					POS l indique 'absence	-	haque p	osition,	respecti			
In	TERV. (Pied	ALLES ds)	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	C_1	C_2	C_4
106 250	à	106 350	1	0	1	1	1	1	0	0	1	0	0
106 350	à	106 450	1	0	1	1	1	1	0	0	1	1	0
106 450	à	106 550	1	0	1	1	1	1	0	0	0	1	0
106 550	à	106 650	1	0	1	1	1	1	0	0	0	1	1
106 650	à	106 750	1	0	1	1	1	1	0	0	0	0	1
106 750	à	106 850	1	0	1	1	0	1	0	0	0	0	1
106 850	à	106 950	1	0	1	1	0	1	0	0	0	1	1
106 950	à	107 050	1	0	1	1	0	1	0	0	0	1	0
107 050	à	107 150	1	0	1	1	0	1	0	0	1	1	0
107 150	à	107 250	1	0	1	1	0	1	0	0	1	0	0
107 250	à	107 350	1	0	1	1	0	1	0	1	1	0	0
107 350	à	107 450	1	0	1	1	0	1	0	1	1	1	0
107 450	à	107 550	1	0	1	1	0	1	0	1	0	1	0
107 550	à	107 650	1	0	1	1	0	1	0	1	0	1	1
107 650	à	107 750	1	0	1	1	0	1	0	1	0	0	1
107 750	à	107 850	1	0	1	1	0	1	1	1	0	0	1
107 850	à	107 950	1	0	1	1	0	1	1	1	0	1	1
107 950	à	108 050	1	0	1	1	0	1	1	1	0	1	0
108 050	à	108 150	1	0	1	1	0	1	1	1	1	1	0
108 150	à	108 250	1	0	1	1	0	1	1	1	1	0	0
108 250	à	108 350	1	0	1	1	0	1	1	0	1	0	0
108 350	à	108 450	1	0	1	1	0	1	1	0	1	1	0
108 450	à	108 550	1	0	1	1	0	1	1	0	0	1	0
108 550	à	108 650	1	0	1	1	0	1	1	0	0	1	1
108 650	à	108 750	1	0	1	1	0	1	1	0	0	0	1
108 750	à	108 850	1	0	1	1	0	0	1	0	0	0	1
108 850	à	108 950	1	0	1	1	0	0	1	0	0	1	1
108 950	à	109 050	1	0	1	1	0	0	1	0	0	1	0
109 050	à	109 150	1	0	1	1	0	0	1	0	1	1	0
109 150	à	109 250	1	0	1	1	0	0	1	0	1	0	0
109 250	à	109 350	1	0	1	1	0	0	1	1	1	0	0
109 350	à	109 450	1	0	1	1	0	0	1	1	1	1	0
109 450	à	109 550	1	0	1	1	0	0	1	1	0	1	0
109 550	à	109 650	1	0	1	1	0	0	1	1	0	1	1
109 650	à	109 750	1	0	1	1	0	0	1	1	0	0	1
109 750	à	109 850	1	0	1	1	0	0	0	1	0	0	1
109 850	à	109 950	1	0	1	1	0	0	0	1	0	1	1
109 950	à	110 050	1	0	1	1	0	0	0	1	0	1	0
110 050	à	110 150	1	0	1	1	0	0	0	1	1	1	0
110 150	à	110 250	1	0	1	1	0	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 129 de 133 1 Janvier 2016

	POSITION DES IMPULSIONS (0 ou 1 indique, pour chaque position, respectivement l'absence ou la présence d'une impulsion)										
PLAGE				-	-			-			
			l	'absence	e ou la p	résence	d'une ir	npulsior	1)		
INTERVALLES	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	C_1	C_2	C_4
(Pieds)								*			
110 250 à 110 350	1	0	1	1	0	0	0	0	1	0	0
110 350 à 110 450	1	0	1	1	0	0	0	0	1	1	0
110 450 à 110 550	1	0	1	1	0	0	0	0	0	1	0
110 550 à 110 650	1	0	1	1	0	0	0	0	0	1	1
110 650 à 110 750	1	0	1	1	0	0	0	0	0	0	1
110 750 à 110 850	1	0	0	1	0	0	0	0	0	0	1
110 850 à 110 950	1	0	0	1	0	0	0	0	0	1	1
110 950 à 111 050	1	0	0	1	0	0	0	0	0	1	0
111 050 à 111 150	1	0	0	1	0	0	0	0	1	1	0
111 150 à 111 250	1	0	0	1	0	0	0	0	1	0	0
111 250 à 111 350	1	0	0	1	0	0	0	1	1	0	0
111 350 à 111 450	1	0	0	1	0	0	0	1	1	1	0
111 450 à 111 550	1	0	0	1	0	0	0	1	0	1	0
111 550 à 111 650	1	0	0	1	0	0	0	1	0	1	1
111 650 à 111 750	1	0	0	1	0	0	0	1	0	0	1
111 750 à 111 850	1	0	0	1	0	0	1	1	0	0	1
111 850 à 111 950	1	0	0	1	0	0	1	1	0	1	1
111 950 à 112 050	1	0	0	1	0	0	1	1	0	1	0
112 050 à 112 150	1	0	0	1	0	0	1	1	1	1	0
112 150 à 112 250	1	0	0	1	0	0	1	1	1	0	0
112 250 à 112 350	1	0	0	1	0	0	1	0	1	0	0
112 350 à 112 450	1	0	0	1	0	0	1	0	1	1	0
112 450 à 112 550	1	0	0	1	0	0	1	0	0	1	0
112 550 à 112 650	1	0	0	1	0	0	1	0	0	1	1
112 650 à 112 750	1	0	0	1	0	0	1	0	0	0	1
112 750 à 112 850	1	0	0	1	0	1	1	0	0	0	1
112 850 à 112 950	1	0	0	1	0	1	1	0	0	1	1
112 950 à 113 050	1	0	0	1	0	1	1	0	0	1	0
113 050 à 113 150	1	0	0	1	0	1	1	0	1	1	0
113 150 à 113 250	1	0	0	1	0	1	1	0	1	0	0
113 250 à 113 350	1	0	0	1	0	1	1	1	1	0	0
113 350 à 113 450	1	0	0	1	0	1	1	1	1	1	0
113 450 à 113 550	1	0	0	1	0	1	1	1	0	1	0
113 550 à 113 650	1	0	0	1	0	1	1	1	0	1	1
113 650 à 113 750	1	0	0	1	0	1	1	1	0	0	1
113 750 à 113 850	1	0	0	1	0	1	0	1	0	0	1
113 850 à 113 950	1	0	0	1	0	1	0	1	0	1	1
113 950 à 114 050	1	0	0	1	0	1	0	1	0	1	0
114 050 à 114 150	1	0	0	1	0	1	0	1	1	1	0
114 150 à 114 250	1	0	0	1	0	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 130 de 133 1 Janvier 2016

			POSITION DES IMPULSIONS (0 ou 1 indique, pour chaque position, respectivement l'absence ou la présence d'une impulsion)										
	PLA	GE				-	-			-			
Ixra	renv.	ALLEG			ι	absence	е ои та р	resence	a une ii	npuision	1)		
	(Pied	ALLES ds)	\mathbf{D}_2	D_4	\mathbf{A}_1	\mathbf{A}_2	A_4	\mathbf{B}_1	\mathbf{B}_2	B_4	C_1	C_2	C ₄
114 250	à	114 350	1	0	0	1	0	1	0	0	1	0	0
114 350	à	114 450	1	0	0	1	0	1	0	0	1	1	0
114 450	à	114 550	1	0	0	1	0	1	0	0	0	1	0
114 550	à	114 650	1	0	0	1	0	1	0	0	0	1	1
114 650	à	114 750	1	0	0	1	0	1	0	0	0	0	1
114 750	à	114 850	1	0	0	1	1	1	0	0	0	0	1
114 850	à	114 950	1	0	0	1	1	1	0	0	0	1	1
114 950	à	115 050	1	0	0	1	1	1	0	0	0	1	0
115 050	à	115 150	1	0	0	1	1	1	0	0	1	1	0
115 150	à	115 250	1	0	0	1	1	1	0	0	1	0	0
115 250	à	115 350	1	0	0	1	1	1	0	1	1	0	0
115 350	à	115 450	1	0	0	1	1	1	0	1	1	1	0
115 450	à	115 550	1	0	0	1	1	1	0	1	0	1	0
115 550	à	115 650	1	0	0	1	1	1	0	1	0	1	1
115 650	à	115 750	1	0	0	1	1	1	0	1	0	0	1
115 750	à	115 850	1	0	0	1	1	1	1	1	0	0	1
115 850	à	115 950	1	0	0	1	1	1	1	1	0	1	1
115 950	à	116 050	1	0	0	1	1	1	1	1	0	1	0
116 050	à	116 150	1	0	0	1	1	1	1	1	1	1	0
116 150	à	116 250	1	0	0	1	1	1	1	1	1	0	0
116 250	à	116 350	1	0	0	1	1	1	1	0	1	0	0
116 350	à	116 450	1	0	0	1	1	1	1	0	1	1	0
116 450	à	116 550	1	0	0	1	1	1	1	0	0	1	0
116 550	à	116 650	1	0	0	1	1	1	1	0	0	1	1
116 650	à	116 750	1	0	0	1	1	1	1	0	0	0	1
116 750	à	116 850	1	0	0	1	1	0	1	0	0	0	1
116 850	à	116 950	1	0	0	1	1	0	1	0	0	1	1
116 950	à	117 050	1	0	0	1	1	0	1	0	0	1	0
117 050	à	117 150	1	0	0	1	1	0	1	0	1	1	0
117 150	à	117 250	1	0	0	1	1	0	1	0	1	0	0
117 250	à	117 350	1	0	0	1	1	0	1	1	1	0	0
117 350	à	117 450	1	0	0	1	1	0	1	1	1	1	0
117 450	à	117 550	1	0	0	1	1	0	1	1	0	1	0
117 550	à	117 650	1	0	0	1	1	0	1	1	0	1	1
117 650	à	117 750	1	0	0	1	1	0	1	1	0	0	1
117 750	à	117 850	1	0	0	1	1	0	0	1	0	0	1
117 850	à	117 950	1	0	0	1	1	0	0	1	0	1	1
117 950	à	118 050	1	0	0	1	1	0	0	1	0	1	0
118 050	à	118 150	1	0	0	1	1	0	0	1	1	1	0
118 150	à	118 250	1	0	0	1	1	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 131 de 133 1 Janvier 2016

			POSITION DES IMPULSIONS (0 ou 1 indique, pour chaque position, respectivement										
]	PLA	GE			(0 ou 1	indique	e, pour c	chaque p	osition,	respecti	ivement		
					l	'absence	e ou la p	résence	d'une ir	npulsion	n)		
		ALLES	D_2	D_4	٨	٨	٨	B_1	B_2	B_{4}	C_1	C_2	C_4
	(Piec	ds)	D_2	D_4	\mathbf{A}_1	A_2	A_4	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_4	C_1	C_2	C_4
118 250	à	118 350	1	0	0	1	1	0	0	0	1	0	0
118 350	à	118 450	1	0	0	1	1	0	0	0	1	1	0
118 450	à	118 550	1	0	0	1	1	0	0	0	0	1	0
118 550	à	118 650	1	0	0	1	1	0	0	0	0	1	1
118 650	à	118 750	1	0	0	1	1	0	0	0	0	0	1
118 750	à	118 850	1	0	0	0	1	0	0	0	0	0	1
118 850	à	118 950	1	0	0	0	1	0	0	0	0	1	1
118 950	à	119 050	1	0	0	0	1	0	0	0	0	1	0
119 050	à	119 150	1	0	0	0	1	0	0	0	1	1	0
119 150	à	119 250	1	0	0	0	1	0	0	0	1	0	0
119 250	à	119 350	1	0	0	0	1	0	0	1	1	0	0
119 350	à	119 450	1	0	0	0	1	0	0	1	1	1	0
119 450	à	119 550	1	0	0	0	1	0	0	1	0	1	0
119 550	à	119 650	1	0	0	0	1	0	0	1	0	1	1
119 650	à	119 750	1	0	0	0	1	0	0	1	0	0	1
119 750	à	119 850	1	0	0	0	1	0	1	1	0	0	1
119 850	à	119 950	1	0	0	0	1	0	1	1	0	1	1
119 950	à	120 050	1	0	0	0	1	0	1	1	0	1	0
120 050	à	120 150	1	0	0	0	1	0	1	1	1	1	0
120 150	à	120 250	1	0	0	0	1	0	1	1	1	0	0
120 250	à	120 350	1	0	0	0	1	0	1	0	1	0	0
120 350	à	120 450	1	0	0	0	1	0	1	0	1	1	0
120 450	à	120 550	1	0	0	0	1	0	1	0	0	1	0
120 550	à	120 650	1	0	0	0	1	0	1	0	0	1	1
120 650	à	120 750	1	0	0	0	1	0	1	0	0	0	1
120 750	à	120 850	1	0	0	0	1	1	1	0	0	0	1
120 850	à	120 950	1	0	0	0	1	1	1	0	0	1	1
120 950	à	121 050	1	0	0	0	1	1	1	0	0	1	0
121 050	à	121 150	1	0	0	0	1	1	1	0	1	1	0
121 150	à	121 250	1	0	0	0	1	1	1	0	1	0	0
121 250	à	121 350	1	0	0	0	1	1	1	1	1	0	0
121 350	à	121 450	1	0	0	0	1	1	1	1	1	1	0
121 450	à	121 550	1	0	0	0	1	1	1	1	0	1	0
121 550	à	121 650	1	0	0	0	1	1	1	1	0	1	1
121 650	à	121 750	1	0	0	0	1	1	1	1	0	0	1
121 750	à	121 850	1	0	0	0	1	1	0	1	0	0	1
121 850	à	121 950	1	0	0	0	1	1	0	1	0	1	1
121 950	à	122 050	1	0	0	0	1	1	0	1	0	1	0
122 050	à	122 150	1	0	0	0	1	1	0	1	1	1	0
122 150	à	122 250	1	0	0	0	1	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 132 de 133 1 Janvier 2016

				POS	SITION	DES IM	IPULSI(ONS			
PLAGE			(0 ou 1	indique	e, pour c	haque p	osition,	respecti	ivement		
			1	'absenc	e ou la p	résence	d'une ii	npulsion	1)		
INTERVALLES	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_{4}	C_1	C_2	C_4
(Pieds)											
122 250 à 122 350	1	0	0	0	1	1	0	0	1	0	0
122 350 à 122 450	1	0	0	0	1	1	0	0	1	1	0
122 450 à 122 550	1	0	0	0	1	1	0	0	0	1	0
122 550 à 122 650	1	0	0	0	1	1	0	0	0	1	1
122 650 à 122 750	1	0	0	0	1	1	0	0	0	0	1
122 750 à 122 850	1	0	0	0	0	1	0	0	0	0	1
122 850 à 122 950	1	0	0	0	0	1	0	0	0	1	1
122 950 à 123 050	1	0	0	0	0	1	0	0	0	1	0
123 050 à 123 150	1	0	0	0	0	1	0	0	1	1	0
123 150 à 123 250	1	0	0	0	0	1	0	0	1	0	0
123 250 à 123 350	1	0	0	0	0	1	0	1	1	0	0
123 350 à 123 450	1	0	0	0	0	1	0	1	1	1	0
123 450 à 123 550	1	0	0	0	0	1	0	1	0	1	0
123 550 à 123 650	1	0	0	0	0	1	0	1	0	1	1
123 650 à 123 750	1	0	0	0	0	1	0	1	0	0	1
123 750 à 123 850	1	0	0	0	0	1	1	1	0	0	1
123 850 à 123 950	1	0	0	0	0	1	1	1	0	1	1
123 950 à 124 050	1	0	0	0	0	1	1	1	0	1	0
124 050 à 124 150	1	0	0	0	0	1	1	1	1	1	0
124 150 à 124 250	1	0	0	0	0	1	1	1	1	0	0
124 250 à 124 350	1	0	0	0	0	1	1	0	1	0	0
124 350 à 124 450	1	0	0	0	0	1	1	0	1	1	0
124 450 à 124 550	1	0	0	0	0	1	1	0	0	1	0
124 550 à 124 650	1	0	0	0	0	1	1	0	0	1	1
124 650 à 124 750	1	0	0	0	0	1	1	0	0	0	1
124 750 à 124 850	1	0	0	0	0	0	1	0	0	0	1
124 850 à 124 950	1	0	0	0	0	0	1	0	0	1	1
124 950 à 125 050	1	0	0	0	0	0	1	0	0	1	0
125 050 à 125 150	1	0	0	0	0	0	1	0	1	1	0
125 150 à 125 250	1	0	0	0	0	0	1	0	1	0	0
125 250 à 125 350	1	0	0	0	0	0	1	1	1	0	0
125 350 à 125 450	1	0	0	0	0	0	1	1	1	1	0
125 450 à 125 550	1	0	0	0	0	0	1	1	0	1	0
125 550 à 125 650	1	0	0	0	0	0	1	1	0	1	1
125 650 à 125 750	1	0	0	0	0	0	1	1	0	0	1
125 750 à 125 850	1	0	0	0	0	0	0	1	0	0	1
125 850 à 125 950	1	0	0	0	0	0	0	1	0	1	1
125 950 à 126 050	1	0	0	0	0	0	0	1	0	1	0
126 050 à 126 150	1	0	0	0	0	0	0	1	1	1	0
126 150 à 126 250	1	0	0	0	0	0	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 3 Edition : Date Page 2 de 133 1

Janvier 2016

	PLA	GE				indique	e, pour c	DES IM haque p résence	osition,	respecti			
In	TERV (Pie	ALLES ds)	D_2	D_4	A_1	A_2	A_4	\mathbf{B}_1	B_2	B_4	\mathbf{C}_1	C_2	C_4
126 250	à	126 350	1	0	0	0	0	0	0	0	1	0	0
126 350	à	126 450	1	0	0	0	0	0	0	0	1	1	0
126 450	à	126 550	1	0	0	0	0	0	0	0	0	1	0
126 550	à	126 650	1	0	0	0	0	0	0	0	0	1	1
126 650	à	126 750	1	1 0 0 0 0 0 0 0 1									

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 1 de 68

Janvier 2016

1

CHAPITRE 4. SYSTEME ANTICOLLISION EMBARQUE

Note liminaire.— Le présent chapitre contient les SARP sur l'ACAS II, l'ACAS II et l'ACAS III. Il met l'accent en particulier sur l'ACAS II, qui fournit des avis de résolution (RA) dans le plan vertical en plus d'avis de trafic1 (TA). Les dispositions sont énoncées en détail dans les sections suivantes :

- 4.3 ACAS II et ACAS III DISPOSITIONS GÉNÉRALES
- 4.4 PERFORMANCE DE LA LOGIQUE ANTICOLLISION DE L'ACAS II
- 4.5 UTILISATION DU SQUITTER LONG PAR L'ACAS

L'ACAS X et le TCAS version 7.1 sont considérés comme des systèmes ACAS II. Les dispositions du présent chapitre qui s'appliquent aux systèmes conformes à l'ACAS X concernent l'ACAS Xa [« a » pour « active » (surveillance active), qui désigne sa principale source de surveillance] et l'ACAS Xo [« o » pour « operation specific » (adapté à l'exploitation)]. L'ACAS Xa est destiné aux aéronefs commerciaux de grandes dimensions. L'ACAS Xo est une variante particulière d'ACAS X qui offre des modes spéciaux de plus par rapport à l'ACAS Xa.

L'ACAS X est un substitut pour les systèmes conformes au TCAS version 7.1, et il est interopérable avec eux. Toutefois, il existe des différences entre l'ACAS X et le TCAS version 7.1, principalement à deux points de vue : la logique anticollision et les sources de données de surveillance. Vu ces différences, dans la présente Annexe, les exigences techniques applicables en particulier à l'ACAS X contiennent l'expression« Systèmes conformes à l'ACAS X », et celles qui s'appliquent au TCAS version 7.1, l'expression« Systèmes conformes au TCAS version 7.1 ».

Des éléments indicatifs sur les systèmes conformes à l'ACAS X et les systèmes conformes au TCAS version 7.1, y compris les similitudes et les différences (p. ex., surveillance et formation) figurent dans le Manuel du système anticollision embarqué (ACAS) (Doc 9863).

Il y a lieu de noter que les dispositions de la section 4.5 concernant la surveillance hybride et la surveillance hybride élargie décrivent des fonctionnalités qui sont facultatives pour les systèmes conformes au TCAS version 7.1. Cela dit, l'utilisation de ces fonctionnalités est encouragée pour réduire le plus possible le risque d'encombrement du spectre RF de l'ACAS. En effet, l'exploitation appropriée et efficace de la largeur de bande et de la capacité disponibles à 1 030 MHz et 1 090 MHz est un élément crucial pour la sécurité du fonctionnement non seulement de l'ACAS mais aussi de plusieurs systèmes de surveillance, comme le radar secondaire de surveillance radar (SSR) et la surveillance dépendante automatique en mode diffusion (ADS-B). Ces fonctionnalités sont présentes dans les systèmes conformes à l'ACAS X.

Des unités supplétives hors SI sont utilisées, comme le permet l'Annexe 5, Chapitre 3, § 3.2.2. Dans un nombre limité de cas, afin d'assurer la cohérence du point de vue des calculs logiques, il est fait appel à des unités telles que ft/s, NM/s et kt/s.

Amendement 3 03/11/2022

-

¹ Avis de circulation sera progressivement remplacé par avis de trafic.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 2 de 68

1

Janvier 2016

Pour de plus amples indications sur les systèmes conformes au TCAS version 7.1, voir la spécification RTCA/DO-185B ou EUROCAE/ED-143 [équipement incorporant le système d'alerte de trafic et d'évitement de collision (TCAS) version 7.1]. Pour les systèmes conformes à l'ACAS X, voir la spécification RTCA/DO-385 ou EUROCAE/ED-256 [équipement incorporant le système anticollision embarqué X (ACAS X)]. L'équipement répondant à la spécification ACAS X ou TCAS version 7.1 indiquée ci-dessus satisfait aux exigences de l'ACAS II énumérées dans le Chapitre 4. L'équipement répondant à la spécification RTCA/DO-185A (aussi appelé TCAS version 7.0) ne satisfait pas à ces exigences.

4.1 DEFINITIONS RELATIVES AU SYSTEME ANTICOLLISION EMBARQUE

ACAS I. ACAS qui émet des renseignements pour faciliter le déclenchement de mesures conformes au principe « voir et éviter », mais qui ne possède pas la capacité d'émettre des avis de résolution (RA).

Note.— Il n'est pas prévu que l'ACAS I soit mis en œuvre à l'échelle internationale ni normalisé par l'OACI. C'est pourquoi seules sont spécifiées au § 4.2 les caractéristiques qu'il doit posséder pour être compatible avec d'autres configurations ACAS et conforme aux normes de limitation du brouillage.

- ACAS II. ACAS qui émet, outre des avis de circulation (TA), des avis de résolution (RA) dans le plan vertical.
- **ACAS III.** ACAS qui émet, outre des avis de circulation (TA), des avis de résolution (RA) dans le plan vertical et dans le plan horizontal.
- Aéronef de référence. Aéronef doté de l'ACAS en question, lequel est censé permettre d'éviter les collisions, et qui peut avoir à exécuter une manœuvre en réponse à une indication de l'ACAS.
- Avis de circulation (TA). Indication signalant à l'équipage de conduite qu'un intrus particulier constitue une menace possible.
- Avis de résolution (RA). Indication donnée à l'équipage de conduite, ayant pour objet de lui recommander :
 - a) d'exécuter une manœuvre afin que soit assurée la séparation nécessaire d'avec toutes les menaces,
 - b) de se conformer à une restriction de manœuvre afin que soit maintenue la séparation existante.
- Avis de résolution à augmentation de taux de variation. Avis de résolution dont la force recommande de porter le taux de variation d'altitude à une valeur supérieure à celle que recommandait un avis de résolution « vers le haut » ou « vers le bas » précédent.
- Avis de résolution à franchissement d'altitude. Un avis de résolution est dit à franchissement d'altitude si l'aéronef ACAS de référence se trouve actuellement à au moins 30 m (100 ft) au-dessous de l'aéronef menaçant si c'est un avis « vers le haut », ou au-dessus de l'aéronef menaçant si c'est un avis « vers le bas ».

Avis de résolution à limite de vitesse verticale (VSL). Avis de résolution conseillant au pilote d'éviter une certaine plage de taux de variation d'altitude. Un avis de résolution VSL peut être soit correctif, soit préventif.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 3 de 68

1

Janvier 2016

Avis de résolution complémentaire en vigueur. Un avis de résolution complémentaire est dit « en vigueur » lorsqu'il impose des contraintes sur la sélection de l'avis de résolution. Les avis de résolution complémentaires reçus au cours des 6 dernières secondes qui n'ont pas été expressément annulés sont en vigueur.

- Avis de résolution complémentaire (RAC). Information communiquée par un ACAS à un autre au moyen d'une interrogation mode S afin d'obtenir que les deux aéronefs exécutent des manœuvres complémentaires en restreignant le choix de manœuvres dont dispose l'ACAS qui reçoit l'avis de résolution complémentaire.
- Avis de résolution correctif. Avis de résolution conseillant au pilote de s'écarter de sa trajectoire de vol actuelle.
- Avis de résolution inversé. Avis de résolution dont le sens a été renversé.
- **Avis de résolution positif.** Avis de résolution conseillant au pilote soit de monter, soit de descendre (s'applique à l'ACAS II).
- **Avis de résolution préventif.** Avis de résolution conseillant au pilote d'éviter certains écarts par rapport à sa trajectoire de vol actuelle mais n'exigeant pas que celle-ci soit modifiée.
- Avis de résolution « vers le bas ». Avis de résolution positif recommandant une descente mais non une descente accélérée.
- Avis de résolution « vers le haut ». Avis de résolution positif recommandant une montée mais non une montée accélérée.
- **Coordination.** Processus selon lequel deux aéronefs dotés de l'ACAS sélectionnent des avis de résolution (RA) compatibles en échangeant des avis de résolution complémentaires (RAC).
- **Cycle.** Dans le présent chapitre, suite de fonctions entièrement exécutées par un ACAS II ou III, renouvelée à la cadence nominale d'une fois par seconde.
- **Délai d'avertissement.** Intervalle de temps entre l'instant où est détectée la menace possible/menace et l'instant de rapprochement maximal lorsque ni l'un ni l'autre des aéronefs n'accélère.
- **Diffusion ACAS.** Interrogation de surveillance air-air mode S longue (UF = 16) qui porte une adresse de diffusion.
- Enregistrement d'avis de résolution complémentaires (enregistrement RAC). Ensemble énumérant tous les avis de résolution complémentaires en vigueur dans le plan vertical (VRC) et dans le plan horizontal (HRC) que l'ACAS a reçus. Cet enregistrement est fourni par un ACAS à un autre ou à une station sol mode S au moyen d'une réponse mode S.
- **Force de l'avis de résolution.** Grandeur indiquée pour la manœuvre préconisée par l'avis de résolution. Un avis de résolution peut adopter successivement plusieurs forces avant d'être annulé. Toute nouvelle force assignée annule automatiquement la force assignée auparavant.
- *Interrogation de coordination.* Interrogation mode S (transmission montante) émise par un ACAS II ou III et contenant un message de résolution.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 4 de 68

1

Janvier 2016

Intrus. Aéronef au sujet duquel l'ACAS a généré une piste établie.

Menace. Intrus auquel on doit accorder une attention particulière en raison de sa proximité par rapport à l'aéronef de référence ou parce qu'une succession de mesures de gisement et d'altitude indique que d'après la trajectoire qu'il suit, il pourrait y avoir collision ou quasi-collision avec l'aéronef de référence. Le délai d'avertissement donné dans le cas d'une menace est assez court pour justifier un avis de résolution.

Menace possible. Intrus auquel on doit accorder une attention particulière en raison de sa proximité par rapport à l'aéronef de référence ou parce qu'une succession de mesures de gisement et d'altitude indique que d'après la trajectoire qu'il suit, il pourrait y avoir collision ou quasi-collision avec l'aéronef de référence. Le délai d'avertissement donné dans le cas d'une menace possible est assez court pour justifier un avis de circulation mais non un avis de résolution.

Message de résolution. Message contenant l'avis de résolution complémentaire (RAC).

Niveau de sensibilité (S). Nombre entier qui exprime la valeur d'un ensemble de paramètres servant, dans les algorithmes d'avis de circulation et les algorithmes anticollision, à contrôler le délai d'avertissement donné par la menace possible et la logique de détection des menaces ainsi que les valeurs des paramètres intéressant la logique de sélection des avis de résolution.

Note.— Le niveau de sensibilité n'est pas utilisé pour la sélection des TA et des RA dans les systèmes conformes à l'ACAS X.

Piste. Suite de mesures représentant des positions dont on peut raisonnablement supposer qu'elles ont été occupées par un aéronef.

Piste établie. Piste générée par surveillance air-air ACAS et traitée de la même façon que la piste d'un aéronef réel.

Rapprochement maximal. Situation dans laquelle l'aéronef ACAS de référence et l'aéronef intrus se trouvent à la distance minimale l'un de l'autre. Par conséquent, la distance de rapprochement maximal est la distance minimale entre les deux aéronefs et l'instant de rapprochement maximal est l'instant où ils se trouvent à cette distance l'un de l'autre.

Réponse de coordination. Réponse mode S (transmission descendante) qui indique que le transpondeur mode S faisant partie d'une installation ACAS II ou III a reçu une interrogation de coordination.

Sens de l'avis de résolution. Le sens d'un avis de résolution ACAS II est le suivant : « vers le haut » s'il recommande de monter ou de limiter la vitesse verticale de descente, et « vers le bas » s'il recommande de descendre ou de limiter la vitesse verticale de montée. Il peut être à la fois « vers le haut » et « vers le bas » s'il exige de limiter la vitesse verticale à une plage spécifiée.

Note.— Le sens d'un avis de résolution peut être à la fois « vers le haut » et « vers le bas » lorsque l'avis est émis par l'ACAS en présence de plusieurs menaces simultanées pour assurer une séparation suffisante au-dessous de certaines menaces et au-dessus de certaines autres.

4.2 ACAS I DISPOSITIONS GENERALES ET CARACTERISTIQUES [Réservé]

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 5 de 68

1

Janvier 2016

4.3 ACAS II ET ACAS III — DISPOSITIONS GENERALES

- Note 1.— Dans le présent paragraphe, l'acronyme ACAS désigne soit l'ACAS II, soit l'ACAS III.
- Note 2.— Les spécifications d'emport applicables à l'ACAS figurent dans le RAS 06.

Note 3.— Dans le présent paragraphe, le terme « menace équipée » désigne une menace dotée d'un ACAS II ou d'un ACAS III.

4.3.1 Spécifications fonctionnelles

4.3.1.1 Fonctions de l'ACAS

L'ACAS doit accomplir les fonctions suivantes:

- a) surveillance;
- b) génération d'avis de circulation (TA);
- c) détection des menaces ;
- d) génération d'avis de résolution (RA);
- e) coordination;
- f) communication avec des stations sol.

L'équipement doit accomplir les fonctions b) à e) au cours de chaque cycle de fonctionnement.

4.3.1.1.1 La durée d'un cycle ne doit pas dépasser 1,2 s.

Note.— Il faut spécifier certaines particularités de ces fonctions afin que les unités ACAS coopèrent de manière satisfaisante avec les autres unités ACAS, avec les stations sol mode S et avec le système ATC. Chacune des particularités qui sont spécifiées est examinée plus loin.

4.3.2 Spécifications de performances de surveillance

4.3.2.1 Spécifications générales

L'ACAS doit interroger les transpondeurs SSR modes A/C et mode S équipant d'autres aéronefs et en détecter les réponses. Il doit mesurer la distance et le gisement des aéronefs qui répondent. Dans le cas des systèmes conformes à l'ACAS X, en plus des informations provenant des autres sources indiquées ci-dessus, l'ACAS doit être capable de recevoir les informations ADS-B de position, de vitesse et d'état d'autres aéronefs. À l'aide des mesures obtenues et des renseignements contenus dans les réponses des autres transpondeurs, et dans les messages ADS-B, pour ce qui est des systèmes conformes à l'ACAS X, l'ACAS doit estimer la position relative de chaque aéronef qui répond. Il doit posséder un moyen de déterminer la position de ces aéronefs en présence de réflexions par le sol, de brouillage et de variations de la puissance du signal.

- 4.3.2.1.1 Probabilité d'établissement de pistes. L'ACAS doit générer une piste établie, avec une probabilité d'au moins 0,90 que cette piste soit établie 30 s avant le rapprochement maximal, pour les aéronefs dotés de transpondeurs lorsque toutes les conditions ci-dessous sont remplies :
 - a) l'angle de site de ces aéronefs ne dépasse pas ±10 degrés par rapport au plan défini par l'axe longitudinal et l'axe transversal de l'aéronef ACAS ;
 - b) le taux de variation d'altitude de ces aéronefs est inférieur ou égal à 51 m/s (10 000 ft/min) ;
 - c) les transpondeurs et les antennes de ces aéronefs sont conformes aux spécifications du Chapitre 3, § 3.1.1 et 3.1.2 ;
 - d) la vitesse et la direction de rapprochement de ces aéronefs, la densité locale d'aéronefs dotés d'un transpondeur SSR et le nombre d'autres interrogateurs ACAS présents dans le voisinage (nombre

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 6 de 68

1

Janvier 2016

déterminé par contrôle des diffusions ACAS, § 4.3.7.1.2.4) remplissent les conditions indiquées dans le Tableau 4-1 ;

- e) la distance oblique minimale est égale ou supérieure à 300 m (1 000 ft).
- 4.3.2.1.1.1 L'ACAS doit continuer à assurer la surveillance sans qu'il y ait diminution brutale de la probabilité d'établissement de pistes au moment où l'une quelconque des limites définies au § 4.3.2.1.1 est dépassée.
- 4.3.2.1.1.2 L'ACAS ne doit pas établir de piste pour les aéronefs mode S qui signalent qu'ils se trouvent au sol.
- Note.— Un aéronef mode S peut signaler qu'il se trouve au sol en insérant un code dans le champ possibilités (CA) d'une transmission DF = 11 ou DF = 17 (Chapitre 3, § 3.1.2.5.2.2.1) ou dans le champ situation dans le plan vertical (VS) d'une transmission DF = 0 (Chapitre 3, § 3.1.2.8.2.1). Si cet aéronef se trouve sous surveillance sol mode S, on peut également déterminer qu'il se trouve au sol en observant le champ statut du vol (FS) dans les formats descendants DF = 4, 5, 20 ou 21 (Chapitre 3, § 3.1.2.6.5.1).

Tableau 4-1. Hypothèse de calcul de l'ACAS

					Condition	S			Performance
A	vant	Quad Late		Arri	ère	Densité de maxi		Nombre maximal d'autres ACAS à	
m/s	Vitesse o	de rapproc m/s	hement m	aximale m/s	kt	aéronef/ km²	aéronef/ NM²	moins de 56 km (30 NM)	Probabilité de réussite
260	500	150	300	93	180	0,087	0,30	30	0,90
620	1 200	390	750	220	430	0,017	0,06	30	0,90

Note.— Le Tableau 4-1 montre l'hypothèse de calcul qui a servi de base au développement de l'ACAS. L'expérience opérationnelle et les simulations ont montré que l'ACAS assure une surveillance adéquate pour l'évitement des collisions même lorsque le nombre maximal d'autres ACAS situés à moins de 56 km (30 NM) est un peu supérieur à la valeur indiquée au Tableau 4-1. Les futures conceptions de l'ACAS tiendront compte des densités ACAS actuelles et prévues.

- 4.3.2.1.1.3 [Réservé]
- 4.3.2.1.2 Probabilité de fausse piste. La probabilité qu'une piste modes A/C établie ne corresponde pas à la distance et à l'altitude d'un aéronef réel, si elles sont signalées, doit être inférieure à 1,2 %. Dans le cas d'une piste mode S établie, cette probabilité doit être inférieure à 0,1 %. Ces limites ne doivent être dépassées dans aucun environnement de circulation.
 - 4.3.2.1.3 PRECISION DES MESURES DE DISTANCE ET DE GISEMENT
 - 4.3.2.1.3.1 Pour la mesure de distance, la précision doit être de 14,5 m (1/128 NM) ou meilleure.
- 4.3.2.1.3.2 Les erreurs de mesure du gisement des estimations de position des intrus peuvent ne pas dépasser 10 degrés en valeur quadratique.

Note.— Cette précision de mesure du gisement des intrus est réalisable et suffit pour aider à l'acquisition visuelle des menaces potentielles. En outre, il a été constaté que l'information de gisement est utile pour la détection des menaces, dans les cas où elle peut indiquer qu'un intrus est une menace. En revanche, une telle

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 7 de 68

Janvier 2016

précision est insuffisante comme base pour des avis de résolution dans le plan horizontal ou pour des prévisions fiables de la distance horizontale d'évitement.

- 4.3.2.2 Contrôle du brouillage
- 4.3.2.2.1 *Puissance RF rayonnée maximale.* La puissance apparente rayonnée d'une émission ACAS à un site de 0 degré par rapport à l'axe longitudinal de l'aéronef ne doit pas dépasser 27 dBW.
- 4.3.2.2.1.1 *Puissance rayonnée non désirée.* Lorsqu'un ACAS n'émet pas d'interrogation, la puissance apparente rayonnée dans une direction quelconque ne doit pas dépasser –70 dBm.
- 4.3.2.2.2 Limitation du brouillage. Chaque interrogateur ACAS fonctionnant à une altitude-pression inférieure à 5 490 m (18 000 ft) doit contrôler la cadence et la puissance de ses interrogations ou l'un de ces éléments de manière que des inégalités spécifiques soient vérifiées (§ 4.3.2.2.2.2).
- 4.3.2.2.2.1 Détermination du nombre d'autres ACAS. L'ACAS doit compter les autres interrogateurs ACAS II et III se trouvant dans le voisinage pour faire en sorte que les limites de brouillage soient respectées. Il doit en déterminer le nombre en surveillant les diffusions ACAS (UF = 16) (§ 4.3.7.1.2.4). Chaque ACAS doit surveiller ces interrogations diffusées pour déterminer le nombre des autres ACAS se trouvant à sa portée.
- 4.3.2.2.2.2 Inégalités applicables à la limitation du brouillage ACAS. L'ACAS doit régler la cadence et la puissance de ses interrogations de manière que les trois inégalités ci-dessous restent vérifiées, sauf dans le cas prévu au § 4.3.2.2.2.2.1.

$$\left\{\sum_{i=1}^{i_t} \left\lceil \frac{p(i)}{250} \right\rceil^{\alpha} \right\} < minimum \left\lceil \frac{280}{1+n_a}, \frac{11}{\alpha^2} \right\rceil$$
 (1)

$$\{\sum_{i=1}^{l_i} m(i)\} < 0,01 \tag{2}$$

$$\left\{\frac{1}{B}\sum_{k=1}^{k_{t}}\frac{P_{a}\left(k\right)}{250}\right\} < minimum\left[\frac{80}{1+n_{a}},3\right]$$

$$\tag{3}$$

Dans ces inégalités, les variables doivent être définies comme suit :

it = nombre d'interrogations (modes A/C et mode S) émises pendant un cycle d'interrogation d'une seconde. Ce nombre doit comprendre toutes les interrogations mode S utilisées par la fonction ACAS, y compris celles qui s'ajoutent aux interrogations UF = 0 et UF = 16, sauf dans le cas prévu au § 4.3.2.2.2.2.1;

Note.— Les interrogations UF = 19 sont comprises comme il est spécifié au § 3.1.2.8.9.4.

- $i = \text{indice d'interrogation modes A/C et mode S}, i = 1, 2, ..., i_t$;
- α = minimum d'α₁ calculé selon l'expression α₁ = 1/4 [n_b/n_c] sous réserve des conditions particulières indiquées ci-dessous et d'α₂ calculé selon l'expression α₂ = Log10 [n_a/n_b] / Log10 25, où n_b et n_c représentent le nombre d'aéronefs dotés d'un ACAS II ou d'un ACAS III en activité (en vol ou au

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date Page 8 de 68

1

Janvier 2016

sol) qui se trouvent à moins de 11,2 km (6 NM) et de 5,6 km (3 NM), respectivement, de l'ACAS de référence (fondé sur la surveillance ACAS). Un aéronef ACAS évoluant au sol ou à une hauteur déterminée par radioaltimètre égale ou inférieure à 610 m (2 000 ft) AGL doit inclure à la fois les aéronefs ACAS II et ACAS III en vol et au sol dans les valeurs de n_b et n_c . Dans les autres cas, l'ACAS ne doit inclure que les aéronefs ACAS II et ACAS III en vol dans les valeurs de n_b et n_c . De plus, la valeur d' α , α_1 et α_2 doit être limitée à un minimum de 0,5 et à un maximum de 1,0.

En outre:

SI
$$[(n_b \le 1) \text{ OU } (n_b \le 4 \text{ ET } n_c \le 2 \text{ ET } n_a > 25)]$$
, ALORS $\alpha_1 = 1,0$,

SI
$$[(n_c > 2) \text{ ET } (n_b > 2 n_c) \text{ ET } (n_a < 40)]$$
, ALORS $\alpha_1 = 0.5$;

- p(i) = puissance de crête, rayonnée depuis l'antenne dans toutes les directions, de l'impulsion ayant la plus grande amplitude parmi les impulsions constituant une seule interrogation pendant l' i^e interrogation dans un cycle d'interrogation d'une seconde, en watts ;
- m(i) = durée de l'intervalle de suppression mutuelle pour le transpondeur de l'aéronef de référence, associé avec l' i^e interrogation dans un cycle d'interrogation d'une seconde, en secondes ;
- B = facteur d'amincissement du faisceau (rapport de la largeur de faisceau à 3 dB à la largeur de faisceau résultant de la suppression des lobes secondaires d'interrogation). Dans le cas des interrogateurs ACAS utilisant la suppression des lobes secondaires (SLS) à l'émission, la largeur de faisceau appropriée doit être la valeur moyenne, calculée pour la population de transpondeurs, de la plage d'angles d'azimut des réponses modes A/C d'un transpondeur avec limitation par SLS;

Pa(k) '

k '

Kt "

n_a "

Note.— Les diffusions d'avis de résolution et les diffusions ACAS (§ 4.3.6.2.1 et 4.3.7.1.2.4) sont des interrogations.

- 4.3.2.2.2.2.1 Emissions faites durant les avis de résolution. Toutes les interrogations de coordination air-air doivent être émises à pleine puissance, et il ne doit pas être tenu compte de ces interrogations dans la sommation des interrogations mode S dans les termes de gauche des inégalités (1) et (2) figurant au § 4.3.2.2.2.2 durant l'avis de résolution.
- 4.3.2.2.2.2 Emissions provenant d'unités ACAS au sol. Lorsqu'un aéronef ACAS indique qu'il est au sol, les interrogations ACAS doivent être limitées par la mise du nombre des autres aéronefs ACAS

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 9 de 68

1

Janvier 2016

II et ACAS III (n_a) , dans les inégalités de limitation du brouillage, à une valeur égale à trois fois celle qui est obtenue sur la base des diffusions ACAS reçues avec un seuil de récepteur de transpondeur de -74 dBm. Chaque fois que la puissance d'interrogation modes A/C est réduite en raison de la limitation du brouillage, elle doit d'abord être réduite dans le faisceau avant jusqu'à ce que la séquence avant corresponde aux séquences droite et gauche. Les puissances d'interrogation avant, droite et gauche doivent ensuite être réduites séquentiellement jusqu'à ce qu'elles correspondent à la puissance d'interrogation arrière. Toute autre réduction de la puissance modes A/C doit être effectuée en réduisant séquentiellement les puissances d'interrogation avant, latérales et arrière.

4.3.2.2.2.3 Emissions provenant d'unités ACAS fonctionnant à une altitude supérieure à 5 490 m (18 000 ft). Chaque interrogateur ACAS fonctionnant à une altitude-pression supérieure à 5 490 m (18 000 ft) doit contrôler la cadence et la puissance de ses interrogations, ou l'un de ces éléments, de manière que les inégalités (1) et (3) figurant au § 4.3.2.2.2.2 restent vérifiées lorsque n_a et α égalent 1, sauf dans le cas prévu au § 4.3.2.2.2.2.1.

4.3.3 Avis de trafic (TA)

4.3.3.1 Fonction génération d'avis de trafic

- L'ACAS doit émettre des avis de trafic (TA) pour prévenir l'équipage de conduite de menaces possibles. Ces avis doivent être accompagnés d'une indication de la position relative approximative des menaces afin de faciliter l'acquisition visuelle.
- 4.3.3.1.1 Affichage des menaces possibles. Les menaces possibles indiquées sur un écran de trafic doivent être affichées en ambre ou en jaune.
- Note 1.— Ces couleurs sont généralement jugées appropriées pour signaler les situations appelant une mise en garde.
- Note 2.— Des renseignements supplémentaires destinés à faciliter l'acquisition visuelle, comme la tendance verticale et l'altitude relative, peuvent aussi être affichés.
- Note 3.— La conscience de la circulation environnante est améliorée quand les pistes peuvent être accompagnées de renseignements sur le cap (p. ex. provenant des messages ADS-B reçus).
 - 4.3.3.2 Affichage des aéronefs se trouvant à proximité
- 4.3.3.2.1 Les aéronefs situés à moins de 11 km (6 NM) dans le plan horizontal et, si l'altitude est signalée, à moins de 370 m (1 200 ft) dans le plan vertical, peuvent également être affichés pendant l'affichage d'avis de circulation ou de résolution. Ces aéronefs peuvent être distingués (à l'aide de symboles ou de couleurs) des menaces et des menaces possibles qui devront apparaître plus en évidence à l'affichage.
- 4.3.3.2.2 Pendant l'affichage d'un avis de résolution ou de circulation, l'acquisition visuelle des menaces et/ou menaces possibles ne devrait pas être entravée par l'affichage d'aéronefs à proximité ou d'autres données qui n'ont aucun rapport avec l'évitement des collisions.
 - 4.3.3.3 Avis de trafic préalables aux avis de résolution

Les critères concernant les avis de trafic doivent être tels qu'ils soient satisfaits avant ceux qui concernent les avis de résolution.

Note.— Idéalement, les avis de résolution devraient toujours être précédés d'un avis de trafic, mais ce ne sera pas toujours le cas. Par exemple, les critères des avis de résolution pourraient être déjà satisfaits lorsque la piste est établie pour la première fois, ou une manœuvre soudaine de l'intrus pourrait faire en sorte que le délai

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 10 de 68

Janvier 2016

d'avertissement soit inférieur à un cycle.

- 4.3.3.3.1 Délai d'avertissement pour les avis de trafic.
- 4.3.3.3.1.1 Dans le cas des systèmes conformes au TCAS version 7.1, le délai d'avertissement nominal pour les avis de trafic à propos d'intrus qui signalent leur altitude ne doit pas être supérieur à (T + 20 s), T étant le délai d'avertissement nominal pour la génération de l'avis de résolution.
- 4.3.3.3.1.2 Dans le cas des systèmes conformes à l'ACAS X, le délai d'avertissement pour les avis de trafic doit être suffisant pour permettre à l'équipage de conduite de prendre les mesures décrites dans les PANS-OPS, Volume III, et de se préparer à un éventuel avis de résolution.

Note.— Le délai d'avertissement nominal pour un avis de trafic est de 20 s ou moins avant la génération de l'avis de résolution.

4.3.4 Détection des menaces

4.3.4.1 Déclaration de menace

L'ACAS doit évaluer les caractéristiques appropriées de chaque intrus pour déterminer s'il constitue une menace.

- 4.3.4.1.1 *Caractéristiques de l'intrus.* Les caractéristiques d'un intrus qui servent à l'identification d'une menace doivent comprendre au minimum les informations suivantes :
 - a) altitude observée;
 - b) taux de variation d'altitude observé;
 - c) distance oblique observée;
 - d) taux de variation de distance oblique observé ;
 - e) systèmes conformes au TCAS version 7.1 : niveau de sensibilité de l'ACAS de l'intrus, S_i.

Pour un intrus non doté d'ACAS II ou d'ACAS III, S_i doit être positionné à 1.

- 4.3.4.1.2 *Caractéristiques de l'aéronef de référence.* Au minimum, les caractéristiques de l'aéronef de référence utilisées pour la définition d'une menace doivent comprendre :
 - a) l'altitude;
 - b) le taux de variation d'altitude ;
 - c) le niveau de sensibilité de l'ACAS de référence (§ 4.3.4.3).
 - 4.3.4.2 Niveaux de sensibilité

L'ACAS doit être capable de fonctionner à différents niveaux de sensibilité. Ces niveaux sont les suivants

- a) S = 1: mode « attente » dans leguel l'interrogation d'autres aéronefs et tous les avis sont interdits ;
- b) S = 2: mode « avis de trafic seulement » dans lequel les avis de résolution sont interdits ;
- c) S = 3 à 7 : à ces niveaux, l'ACAS peut émettre des avis de résolution qui donnent les délais d'avertissement indiqués au Tableau 4-2, ainsi que des avis de trafic.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 11 de 68

Janvier 2016

d) systèmes conformes à l'ACAS X : S = 3 : mode « TA/RA » permettant l'émission de RA et de TA.

Tableau 4-2

Systèmes conformes au TCAS version 7.1:

Niveau de sensibilité	2	3	4	5	6	7
Délai nominal d'avertissement	pas de RA	15 s	20 s	25 s	30 s	35 s

4.3.4.3 Sélection du niveau de sensibilité de l'ACAS de l'aéronef de référence (S_o)

La sélection du niveau de sensibilité de l'ACAS de l'aéronef de référence doit se faire selon des commandes de réglage du niveau de sensibilité (sensitivity level control) (SLC) d'origines différentes :

- a) commande de SLC produite automatiquement par l'ACAS et fondée sur la tranche d'altitude ou d'autres facteurs extérieurs ;
- b) commande de SLC résultant d'une action du pilote ;
- c) systèmes conformes au TCAS version 7.1 : commande de SLC émanant de stations sol mode S.

Note.— Les systèmes conformes à l'ACAS X reconnaissent les commandes de SLC émanant des stations sol ; il n'est donc pas nécessaire de modifier celles-ci pour ces commandes. Toutefois, la valeur du niveau de sensibilité n'est pas utilisée dans les systèmes conformes à l'ACAS X.

4.3.4.3.1 Codes de commande de SLC permis. Les codes de commande de SLC acceptables doivent comprendre au minimum les suivants :

Codes

SLC fondé sur la tranche d'altitude	2-7 2-3	(systèmes conformes au TCAS version 7.1) (systèmes conformes à l'ACAS X)
SLC résultant de données introduites par le pilote	0, 1, 2	
SLC émanant de stations sol mode S	0, 2-6	(systèmes conformes au TCAS version 7.1)

- 4.3.4.3.2 Commande de SLC fondée sur la tranche d'altitude. Pour sélectionner la commande de SLC en fonction de la tranche d'altitude, une hystérésis doit être appliquée comme suit aux seuils nominaux d'altitude où la valeur de la commande de SLC doit changer : pour un aéronef ACAS en montée, la commande de SLC doit augmenter jusqu'à l'altitude égale à la somme du seuil approprié d'altitude et de l'hystérésis ; pour un aéronef ACAS en descente, la commande de SLC doit diminuer jusqu'à l'altitude égale à la différence entre le seuil approprié d'altitude et l'hystérésis.
- 4.3.4.3.3 Commande de SLC émanant du pilote. Dans le cas de la commande de SLC émanant du pilote, la valeur 0 signifie qu'il y a sélection du mode « automatique » pour lequel la sélection du niveau de sensibilité doit être déterminée par les autres commandes.
 - 4.3.4.3.4 Commande de SLC émanant d'une station sol mode S.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 12 de 68

Janvier 2016

4.3.4.3.4.1 Systèmes conformes au TCAS version 7.1 : Dans le cas des commandes de SLC transmises via des stations sol mode S (§ 4.3.8.4.2.1.1), la valeur 0 signifie que la station intéressée n'émet pas de commande de SLC et que la sélection du niveau de sensibilité doit être déterminée par les autres commandes, y compris les commandes différentes de 0 émanant d'autres stations sol mode S. L'ACAS ne doit pas traiter une valeur SLC de 1 émise en liaison montante.

4.3.4.3.4.2 Systèmes conformes à l'ACAS X : L'ACAS doit recevoir toutes les commandes de SLC émanant des stations sol mode S mais ne doit pas utiliser les valeurs de niveau de sensibilité.

- 4.3.4.3.4.3 Sélection du code de commande de SLC par les services ATS. Les autorités ATS doivent faire en sorte qu'il y ait des procédures à suivre pour avertir les pilotes lorsqu'un code de commande de SLC sélectionné par les services ATS est différent de 0 (§ 4.3.4.3.1).
- 4.3.4.3.5 Règle de sélection. Le niveau de sensibilité de l'ACAS de l'aéronef de référence doit être fixé selon la plus petite commande de SLC différente de 0 émanant de n'importe laquelle des sources énumérées au § 4.3.4.3.
- 4.3.4.4 Sélection des valeurs de paramètre en vue de la génération des avis de résolution. Systèmes conformes au TCAS version 7.1 : Lorsque le niveau de sensibilité de l'ACAS de référence est d'au moins 3, les valeurs de paramètre servant à la génération d'avis de résolution qui sont fonction du niveau de sensibilité doivent être fondées sur le plus grand des niveaux suivants : niveau de sensibilité de l'ACAS de référence (S₀) et niveau de sensibilité de l'ACAS de l'intrus (S₁).
- 4.3.4.5 Sélection des valeurs de paramètre en vue de la génération d'avis de trafic. Systèmes conformes au TCAS version 7.1 :Les valeurs de paramètre servant à la génération d'avis de trafic qui sont fonction du niveau de sensibilité doivent être sélectionnées de la même façon que pour les avis de résolution (§ 4.3.4.4) sauf lorsqu'une commande de SLC d'une valeur de 2 (mode « TA seulement ») est reçue du pilote ou d'une station sol mode S. Dans ce cas, les valeurs de paramètre doivent être celles qui existeraient en l'absence de commande de SLC provenant du pilote ou de la station sol mode S.
- 4.3.4.6 Validation des pistes ADS-B en vue de la génération des avis de résolution. Systèmes conformes à l'ACAS X : Si une piste ADS-B ne peut pas être validée par interrogation et réponse actives, l'ACAS doit revenir en mode surveillance active pour la logique de résolution des menaces.
 - Note.— Seule une piste ADS-B validée est utilisée pour la génération des avis de résolution.
- 4.3.4.7 Désignation des aéronefs pour la fonction « ne pas alerter (DNA) ». Systèmes conformes à l'ACAS X avec fonctionnalité Xo : si un aéronef intrus est désigné par le statut « ne pas alerter » (DNA), aucune alerte visant l'aéronef intrus ne doit être émise à l'intention de l'équipage de conduite de l'aéronef de référence.
- Note.— L'ACAS Xo offre des modes supplémentaires qui utilisent des critères de détection de menace modifiés en ce qui a trait aux intrus désignés. Pour de plus amples renseignements sur l'ACAS Xo, voir la spécification RTCA/DO-385 ou EUROCAE/ED-256.

4.3.5 Avis de résolution (RA)

4.3.5.1 Génération d'avis de résolution

L'ACAS doit générer un avis de résolution pour toutes les menaces, sauf dans les cas où il n'est pas possible de sélectionner un avis de résolution dont on peut prévoir qu'il assurera une séparation adéquate, soit à cause de l'incertitude du diagnostic de la trajectoire de vol de l'intrus, soit parce qu'il y a un risque élevé qu'une

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date Page 13 de 68

Janvier 2016

manœuvre de la menace annulera l'effet de l'avis de résolution.

4.3.5.1.1 *Affichage de menaces*. Les menaces indiquées sur un écran de trafic doivent être affichées en rouge.

Note.— Cette couleur est généralement jugée appropriée pour signaler les situations nécessitant un avertissement.

- 4.3.5.1.2 Annulation d'avis de résolution.
- 4.3.5.1.2.1 Systèmes conformes au TCAS version 7.1 : Un avis de résolution généré à propos d'une ou plusieurs menaces doit être maintenu ou modifié jusqu'au moment où des tests moins rigoureux que les tests de détection de menace indiquent pendant deux cycles consécutifs que cet avis peut être annulé, et il doit alors être annulé.
- 4.3.5.1.2.2 Systèmes conformes à l'ACAS X : Un avis de résolution généré à propos d'une ou plusieurs menaces doit être maintenu jusqu'à ce que le ou les intrus visés par l'avis de résolution cessent d'être une menace.

4.3.5.2 Sélection de l'avis de résolution

L'ACAS doit générer l'avis de résolution qui doit, selon les prévisions, assurer une séparation adéquate d'avec toutes les menaces et qui influence le moins la trajectoire de vol actuelle de l'aéronef ACAS sans qu'il y ait dérogation aux dispositions du présent chapitre.

4.3.5.3 Efficacité de l'avis de résolution

L'avis de résolution ne doit recommander ni continuer à recommander une manœuvre ou une restriction de manœuvre qui est plus susceptible, étant donné l'éventail des trajectoires probables de la menace, de réduire la séparation que de l'augmenter, sous réserve des dispositions des § 4.3.5.5.1.1 et 4.3.5.6.

Note.— Voir aussi le § 4.3.5.8.

- 4.3.5.3.1 Les ACAS installés après le 1^{er} janvier 2014 doivent contrôler la vitesse verticale de l'aéronef de référence pour vérifier la conformité par rapport au sens du RA. Si une non-conformité est détectée, l'ACAS doit cesser de supposer qu'il y a conformité et doit utiliser à la place la vitesse verticale observée.
- Note 1.— Cette mesure annule le maintien du sens du RA, qui ne fonctionnerait que s'il était suivi. L'hypothèse révisée concernant la vitesse verticale est plus de nature à permettre à la logique de choisir le sens opposé quand il est compatible avec la vitesse verticale de l'aéronef non en conformité.
- Note 2.— L'équipement conforme aux normes RTCA/DO-185 ou DO-185A (aussi appelé TCAS version 6.04A ou version 7.0) ne respecte pas cette disposition.
- Note 3.— La conformité à cette disposition peut être réalisée par la mise en œuvre d'un système d'avertissement de trafic et d'évitement de collision (TCAS) version 7.1 qui répond à la spécification RTCA/DO-185B ou EUROCAE/ED-143, ou d'un système anticollision embarqué X (ACAS Xa ou Xo) qui répond à la spécification RTCA/DO-385 ou EUROCAE/ED-256.
 - 4.3.5.3.2 [Réservé]
- 4.3.5.3.3 Après le 1^{er} janvier 2017, toutes les unités ACAS doivent être conformes aux spécifications du § 4.3.5.3.1.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 14 de 68

Janvier 2016

4.3.5.4 Possibilités de l'aéronef

Les avis de résolution générés par l'ACAS doivent être compatibles avec les possibilités de l'aéronef en matière de performances.

- 4.3.5.4.1 *Proximité du sol.* Des avis de résolution « vers le bas » ne doivent pas être générés ni maintenus lorsque l'aéronef de référence se trouve à moins de 300 m (1 000 ft) AGL.
- 4.3.5.4.2 L'ACAS doit fonctionner en mode TA seulement lorsque l'aéronef de référence se trouve sous 300 m (1 000 ft) AGL (valeur nominale, hystérésis appliquée).

4.3.5.5 Inversions

- L'ACAS ne doit pas inverser le sens d'un avis de résolution d'un cycle au suivant, sauf lorsque les dispositions du § 4.3.5.5.1 le permettent aux fins de coordination ou que la séparation prévue au rapprochement maximal pour le sens actuel est insuffisante.
- 4.3.5.5.1 *Inversion d'avis émis en présence de menaces équipées.* Si un avis de résolution complémentaire reçu d'une menace équipée est incompatible avec le sens d'un avis de résolution en vigueur, l'ACAS doit modifier le sens de cet avis de résolution pour se conformer à l'avis de résolution complémentaire reçu si l'adresse d'aéronef de l'aéronef de référence est d'une valeur supérieure à celle de l'adresse de la menace.
- Note.— Le § 4.3.6.1.3 exige que l'avis de résolution complémentaire de l'ACAS de l'aéronef de référence pour la menace soit aussi inversé.
- 4.3.5.5.1.1 L'ACAS ne doit pas modifier le sens d'un avis de résolution en vigueur d'une façon qui rende l'avis incompatible avec un avis de résolution complémentaire reçu d'une menace équipée si l'adresse d'aéronef de l'aéronef de référence est d'une valeur supérieure à celle de l'adresse de la menace.
- 4.3.5.5.2 *Inversions dues à une séparation prévue insuffisante.* L'ACAS ne doit pas émettre pas plus d'une inversion par menace par rencontre en cas de séparation prévue insuffisante.
 - Note 1.— Systèmes conformes au TCAS version 7.1 : L'aéronef avec l'adresse à 24 bits la plus basse peut amorcer ce type d'inversion à tout moment durant la rencontre ; l'aéronef avec l'adresse à 24 bits la plus haute exécute ce type d'inversion seulement comme suite à un avis de résolution complémentaire reçu de l'aéronef avec l'adresse à 24 bits la plus basse.
 - Note 2.— Systèmes conformes à l'ACAS X : Dans une rencontre coordonnée comme il est décrit à la section 4.3.6.1, l'aéronef avec l'adresse à 24 bits la plus basse peut amorcer ce type d'inversion à tout moment durant la rencontre ; l'aéronef avec l'adresse à 24 bits la plus haute peut amorcer ce type d'inversion seulement avant d'avoir reçu un avis de résolution complémentaire de la menace ou après avoir reçu une annulation de tout avis de résolution complémentaire restant émis par la menace.

4.3.5.6 Maintien de la force de l'avis de résolution

Sous réserve du respect de la disposition selon laquelle un avis de résolution « vers le bas » n'est pas généré aux basses altitudes (§ 4.3.5.4.1), un avis de résolution ne doit pas être modifié si le temps de vol jusqu'au rapprochement maximal est trop court pour que la réaction soit d'une importance quelconque ou si la menace s'écarte en gisement.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 15 de 68

Janvier 2016

4.3.5.7 Atténuation d'avis de résolution

Un avis de résolution ne doit pas être atténué s'il est probablement nécessaire de le renforcer par la suite.

4.3.5.8 Menaces dotées d'ACAS

L'avis de résolution doit être compatible avec tous les avis de résolution complémentaires émis à destination des menaces (§ 4.3.6.1.3). Si un avis de résolution complémentaire est reçu d'une menace avant que l'ACAS de l'aéronef de référence ne génère un avis de résolution complémentaire pour cette menace, l'avis de résolution généré doit être compatible avec l'avis de résolution complémentaire reçu à moins que cet avis ne risque de réduire la séparation plutôt que de l'augmenter et que l'adresse d'aéronef de l'aéronef de référence soit d'une valeur inférieure à celle de l'adresse de la menace.

Note.— Dans les cas de rencontre de menace multiple où il est nécessaire de passer au-dessus de certaines menaces et au-dessous d'autres, on peut considérer que cette spécification est applicable pendant toute la durée de l'avis de résolution. En particulier, il est permis de maintenir un avis de résolution préconisant de monter (descendre) vers une menace située au-dessus (au-dessous) de l'aéronef de référence, à condition qu'il existe une intention calculée d'établir une séparation appropriée par rapport à toutes les menaces en effectuant par la suite une mise en palier.

4.3.5.9 Codage du sous-champ ARA

Pendant chaque cycle d'un avis de résolution, le sens, la force et les caractéristiques de l'avis doivent être codés dans le sous-champ avis de résolution en vigueur (ARA) (§ 4.3.8.4.2.2.1.1)..

4.3.5.10 Délai de réaction du système

Le temps écoulé entre la réception de la réponse SSR pertinente et la présentation du sens et de la force d'un avis de résolution au pilote doit être aussi court que possible et ne doit pas dépasser 1,5 s.

4.3.6 Coordination et communication

4.3.6.1 COORDINATION AVEC LES MENACES DOTEES D'ACAS

Note 1.— Les dispositions de la présente section s'appliquent aux aéronefs qui assurent la coordination avec les aéronefs équipés ACAS en utilisant des interrogations/réponses mode S discrètes 1 030/1 090 MHz.

- Note 2.— L'équipement ACAS qui n'est pas capable d'utiliser les interrogations/réponses mode S discrètes 1 030/1 090 MHz et qui fera appel à l'ADS-B pour transmettre le plan de coordination applicable est en cours d'élaboration. Les systèmes conformes à l'ACAS X offrent une capacité permettant la coordination avec les menaces dotées d'un tel équipement. Pour de plus amples renseignements, voir la section 2.2.3.9.3.1 de la spécification RTCA/DO-385 ou EUROCAE/ED-256.
- 4.3.6.1.1 *Coordination de multiples aéronefs.* Dans une situation où sont en cause de multiples aéronefs, l'ACAS doit assurer la coordination avec chacune des menaces équipées.
- 4.3.6.1.2 Protection des données pendant la coordination. L'ACAS doit empêcher à des processus concurrents d'accéder en même temps aux données emmagasinées, en particulier pendant le traitement des messages de résolution.
- 4.3.6.1.3 Interrogation de coordination. Pendant chaque cycle, l'ACAS doit émettre une interrogation de coordination à destination de chaque menace équipée, à moins que la génération d'un avis de résolution soit retardée en raison de l'impossibilité de sélectionner un avis de résolution dont on peut prévoir qu'il assurera une séparation adéquate (§ 4.3.5.1). Le message de résolution transmis à une menace doit comprendre un avis

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 16 de 68

Janvier 2016

de résolution complémentaire sélectionné pour cette menace. Si un avis de résolution complémentaire a été reçu de cette menace avant que l'ACAS ne sélectionne un avis de résolution complémentaire pour la même menace, l'avis de résolution complémentaire sélectionné doit être compatible avec l'avis de résolution complémentaire reçu à moins qu'il ne se soit écoulé pas plus de trois cycles depuis la réception de l'avis de résolution complémentaire, que cet avis soit à franchissement d'altitude et que l'adresse d'aéronef de l'aéronef de référence soit d'une valeur inférieure à celle de la menace, auquel cas l'ACAS doit choisir son avis de résolution de façon indépendante. Si un avis de résolution complémentaire reçu d'une menace équipée est incompatible avec l'avis de résolution complémentaire que l'ACAS de l'aéronef de référence a sélectionné pour cette menace, l'ACAS doit modifier l'avis de résolution complémentaire sélectionné de manière qu'il soit compatible avec l'avis de résolution complémentaire reçu si l'adresse d'aéronef de l'aéronef de référence est d'une valeur supérieure à celle de l'adresse de la menace.

- Note.— L'avis de résolution complémentaire inclus dans le message de résolution est un avis de résolution complémentaire dans le plan vertical (VRC) dans le cas de l'ACAS II (§ 4.3.8.4.2.3.2.2) et un avis de résolution complémentaire dans le plan vertical (VRC) et/ou dans le plan horizontal (HRC) dans le cas de l'ACAS III.
- 4.3.6.1.3.1 Cessation de la coordination. Au cours du cycle où un intrus cesse d'être un motif de maintien de l'avis de résolution, l'ACAS doit envoyer un message de résolution à cet intrus au moyen d'une interrogation de coordination. Ce message doit contenir le code d'annulation du dernier avis de résolution complémentaire envoyé à l'intrus pendant qu'il constituait un motif de maintien de l'avis de résolution.
- Note.— Dans le cas d'une rencontre de menace simple, la menace cesse de justifier l'avis de résolution lorsque les conditions d'annulation de l'avis sont réunies. Dans le cas d'une rencontre de menace multiple, une menace cesse de justifier l'avis de résolution lorsque les conditions d'annulation de l'avis sont réunies en ce qui concerne cette menace; il peut toutefois être nécessaire de maintenir l'avis en raison des autres menaces.
- 4.3.6.1.3.2 Des interrogations de coordination ACAS doivent être émises, au moins 6 fois et au plus 12 fois, jusqu'à ce qu'une réponse de coordination soit reçue de la menace. Les interrogations successives doivent nominalement être également espacées sur une période de 100 ± 5 ms. Si au bout du nombre maximal de tentatives aucune réponse n'est reçue, l'ACAS doit continuer son traitement normal.
- 4.3.6.1.3.3 L'ACAS doit assurer une protection de parité (§ 4.3.8.4.2.3.2.6 et 4.3.8.4.2.3.2.7) pour tous les champs de l'interrogation de coordination qui contiennent des renseignements concernant l'avis de résolution complémentaire.
- Note.— Cela comprend l'avis de résolution complémentaire dans le plan vertical (VRC), l'avis de résolution complémentaire dans le plan horizontal (HRC) et les annulations correspondantes (CVC et CHC).
- 4.3.6.1.3.4 Toutes les fois que l'ACAS de référence renverse le sens des avis émis en présence d'une menace équipée, le message de résolution qui est envoyé à destination de cette menace pendant le cycle en cours et les cycles suivants doit contenir à la fois l'avis de résolution complémentaire nouvellement sélectionné et le code d'annulation de l'avis de résolution complémentaire envoyé avant l'inversion.
- 4.3.6.1.3.5 Lorsqu'un avis de résolution dans le plan vertical est sélectionné, l'avis de résolution complémentaire dans le plan vertical (VRC) (§ 4.3.8.4.2.3.2.2) que l'ACAS de référence fait figurer dans un message de résolution adressé à la menace doit être le suivant :
 - a) « ne passez pas par-dessus » lorsque l'avis de résolution vise à établir une séparation au-dessus de la menace :
 - b) « ne passez pas par-dessous » lorsque l'avis de résolution vise à établir une séparation au-dessous de la menace.
- 4.3.6.1.4 *Traitement de messages de résolution.* Les messages de résolution doivent être traités dans l'ordre où ils sont reçus, le retard étant limité à celui qui est lié à la nécessité de prévenir l'accès simultané aux données emmagasinées ainsi qu'aux retards dus au traitement des messages de résolution reçus précédemment. Les messages de résolution retardés doivent provisoirement être mis dans une file d'attente,

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 17 de 68

Janvier 2016

pour éviter qu'il en soit perdu. Le traitement d'un message de résolution doit comprendre le décodage du message et la mise à jour des structures de données appropriées à l'aide des informations extraites du message.

- Note 1.— Systèmes conformes au TCAS version 7.1 : Conformément aux dispositions du § 4.3.6.1.2, le traitement de messages de résolution ne doit porter sur aucune donnée dont l'emploi n'est pas protégé par l'état de verrouillage de coordination.
- Note 2.— Systèmes conformes à l'ACAS X : Il peut se produire un accès simultané aux données parce que les messages de résolution entrants sont reçus de manière asynchrone pour le traitement par l'ACAS X, ce qui interrompt ce traitement. Il est nécessaire d'éviter la lecture et l'écriture simultanées par des processus concurrents.
- 4.3.6.1.4.1 Les avis de résolution complémentaires ou annulations d'avis de résolution complémentaire reçus d'aéronefs ACAS doivent être rejetés si les bits codés de sens indiquent l'existence d'une erreur de parité ou si des valeurs non définies sont détectées dans les messages de résolution. Les avis de résolution complémentaires ou annulations d'avis de résolution complémentaire reçus sans erreur de parité ni valeurs non définies de message de résolution doivent être considérés valides.
- 4.3.6.1.4.2 Stockage des avis de résolution complémentaires. Les avis de résolution complémentaires valides reçus d'aéronefs ACAS doivent être stockés ou servir à actualiser les avis de résolution complémentaires stockés précédemment qui correspondent à ces ACAS. Une annulation valide d'avis de résolution complémentaire doit entraîner la suppression de l'avis en question qui est stocké. Les avis de résolution complémentaires stockés qui ne sont pas actualisés dans un délai de 6 s doivent être supprimés.
- 4.3.6.1.4.3 Actualisation des enregistrements RAC. Les avis de résolution complémentaires ou annulations d'avis de résolution complémentaire valides reçus d'aéronefs ACAS doivent servir à actualiser l'enregistrement RAC. Si un bit de l'enregistrement RAC n'est pas régénéré dans un délai de 6 s par une menace, il est positionné à 0.
 - 4.3.6.2 COMMUNICATION ENTRE ACAS ET STATIONS SOL
- 4.3.6.2.1 *Transmission descendante d'avis de résolution ACAS, déclenchée à bord.* Lorsqu'il existe un avis de résolution ACAS, l'ACAS doit:
 - a) transférer à son transpondeur mode S, pour transmission au sol dans une réponse Comm-B (§ 4.3.11.4.1), un compte rendu d'avis de résolution ;
 - b) effectuer des diffusions périodiques d'avis de résolution (§ 4.3.7.3.2).
- 4.3.6.2.2 Commande de réglage du niveau de sensibilité (SLC). Systèmes conformes au TCAS version 7.1 : L'ACAS doit stocker les commandes de SLC émanant des stations sol mode S. Une commande de SLC reçue d'une station sol mode S doit demeurer en vigueur jusqu'au moment où elle est remplacée par une commande de SLC émanant de la même station sol qu'identifie le numéro de site contenu dans le souschamp IIS de l'interrogation. Si une commande stockée d'une station sol mode S n'est pas régénérée dans un délai de 4 minutes ou si la commande de SLC reçue, a la valeur 15 (§ 4.3.8.4.2.1.1), la commande de SLC stockée émanant de cette station sol mode S doit être positionnée à 0.
 - Note.— Les systèmes conformes à l'ACAS X n'utilisent pas la valeur de niveau de sensibilité obtenue comme suite à une commande de SLC visant à modifier la valeur du niveau de sensibilité de l'ACAS de l'aéronef de référence.
 - 4.3.6.3 TRANSFERT DE DONNEES ENTRE L'ACAS ET SON TRANSPONDEUR MODE S
 - 4.3.6.3.1 Transfert de données de l'ACAS à son transpondeur mode S : L'ACAS doit :

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date Page 18 de 68

Janvier 2016

- a) transférer des données d'avis de résolution à son transpondeur mode S pour transmission dans un compte rendu d'avis de résolution (§ 4.3.8.4.2.2.1) et dans une réponse de coordination (§ 4.3.8.4.2.4.2);
- b) communiquer le niveau de sensibilité actuel à son transpondeur mode S pour transmission dans un compte rendu de niveau de sensibilité (§ 4.3.8.4.2.5) ;
- c) transférer des données sur les possibilités à son transpondeur mode S pour transmission dans un compte rendu de possibilités de liaison de données (§ 4.3.8.4.2.2.2).
- Note.— Systèmes conformes à l'ACAS X : L'ACAS n'indiquera pas une valeur de niveau de sensibilité supérieure à 3 dans les données sur les possibilités transférées au transpondeur mode S.
- 4.3.6.3.2 Transfert de données du transpondeur mode S à son ACAS : L'ACAS doit recevoir de son transpondeur mode S :
 - a) des commandes de réglage du niveau de sensibilité (§ 4.3.8.4.2.1.1), provenant de stations sol mode S ;
- Note.— Systèmes conformes à l'ACAS X : La réception des commandes de SLC du transpondeur est nécessaire au respect des protocoles d'interface entre le transpondeur mode S et l'ACAS ; toutefois, les valeurs de niveau de sensibilité ne sont pas utilisées (voir le § 4.3.4.3.4).
 - b) des diffusions ACAS (§ 4.3.8.4.2.3.3) transmises par d'autres ACAS ;
 - c) des messages de résolution (§ 4.3.8.4.2.3.2) transmis par d'autres ACAS en vue de la coordination air-air.

4.3.7 Protocoles ACAS

- 4.3.7.1 PROTOCOLES DE SURVEILLANCE
- 4.3.7.1.1 SURVEILLANCE DES TRANSPONDEURS MODES A/C.
- 4.3.7.1.1.1 L'ACAS doit utiliser l'interrogation « appel général » mode C seulement (Chapitre 3, § 3.1.2.1.5.1.2) pour assurer la surveillance des aéronefs dotés de transpondeurs modes A/C.
- 4.3.7.1.1.2 En utilisant une séquence d'interrogations de puissance croissante, les interrogations de surveillance doivent être précédées d'une impulsion S₁ (Chapitre 3, § 3.1.1.7.4.3) afin de réduire le brouillage et d'améliorer la détection des cibles modes A/C.
 - 4.3.7.1.2 SURVEILLANCE DES TRANSPONDEURS MODE S
- 4.3.7.1.2.1 *Détection.* L'ACAS doit surveiller la fréquence 1 090 MHz en vue de détecter les squitters d'acquisition (DF = 11) mode S. L'ACAS doit détecter la présence d'aéronefs dotés du mode S et en déterminer l'adresse en utilisant les squitters d'acquisition (DF = 11) ou les squitters longs (DF = 17) mode S.
- Note 1.— Il est acceptable d'acquérir un aéronef en utilisant soit le squitter d'acquisition, soit le squitter long (DF = 11 ou DF = 17), et de surveiller la présence des deux squitters. Cependant, l'ACAS doit surveiller la présence des squitters d'acquisition parce que tous les aéronefs n'émettront pas le squitter long.
- Note 2.— Si, à l'avenir, les aéronefs ne sont plus tenus d'émettre le squitter d'acquisition, ayant recours à la place à l'émission continue du squitter long, il sera essentiel que toutes les unités ACAS surveillent la présence des squitters d'acquisition et des squitters longs.
 - Note 3— Les formats DF=11 et DF=17 sont décrits au para. 3.1.2 du Chapitre 3.
- 4.3.7.1.2.2 *Interrogations de surveillance*. Dès qu'il reçoit une adresse à 24 bits d'un aéronef jugé être à la distance de surveillance fiable de l'ACAS d'après la fiabilité de la réception et évoluant dans une tranche

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 19 de 68

Janvier 2016

d'altitude mesurant 3 050 m (10 000 ft) de part et d'autre de l'altitude de l'aéronef de référence, l'ACAS doit émettre une interrogation air-air courte (UF = 0) pour déterminer la distance. Des interrogations de surveillance doivent être émises au moins une fois tous les cinq cycles lorsque cette condition concernant l'altitude est remplie. Des interrogations de surveillance doivent être émises pendant chaque cycle si la distance de l'aéronef détecté est inférieure à 5,6 km (3 NM) ou si le temps de vol calculé jusqu'au rapprochement maximal est inférieur à 60 s, en supposant que l'aéronef détecté et l'aéronef de référence poursuivent leur route à partir de leurs positions respectives actuelles sans accélérer et que la distance au rapprochement maximal soit égale à 5,6 km (3 NM). Les interrogations de surveillance doivent être suspendues pour une période de cinq cycles si les trois conditions suivantes sont réunies :

- a) une réponse est reçue ;
- b) l'aéronef de référence et l'aéronef intrus volent à une altitude-pression inférieure à 5 490 m (18 000 ft);
- c) la distance de l'aéronef détecté est supérieure à 5,6 km (3 NM) et le temps calculé jusqu'au rapprochement maximal dépasse 60 s, en supposant que l'aéronef détecté et l'aéronef de référence poursuivent leur route à partir de leurs positions respectives actuelles sans accélérer et que la distance jusqu'au rapprochement maximal est égale à 5,6 km (3 NM).
- 4.3.7.1.2.2.1 Interrogations d'acquisition de distance. L'ACAS doit utiliser le format de surveillance airair courte (UF = 0) pour déterminer la distance. Il doit positionner AQ = 1 (Chapitre 3, § 3.1.2.8.1.1) et RL = 0 (Chapitre 3, § 3.1.2.8.1.2) dans une interrogation d'acquisition.
- Note 1.— Positionner AQ = 1 déclenche une réponse dans laquelle le bit 14 du champ RI est égal à 1 et aide à distinguer la réponse à l'interrogation de l'ACAS de l'aéronef de référence des réponses déclenchées par d'autres unités ACAS (§ 4.3.7.1.2.2.2).
- Note 2.— Dans l'interrogation d'acquisition, RL est positionné à 0 pour déclencher une réponse d'acquisition courte (DF = 0).
- 4.3.7.1.2.2.2 *Interrogations de poursuite.* L'ACAS doit utiliser le format de surveillance air-air courte (UF = 0) avec RL = 0 et AQ = 0 pour les interrogations de poursuite.
 - 4.3.7.1.2.3 Réponses de surveillance. Ces protocoles sont décrits au § 4.3.11.3.1.
- 4.3.7.1.2.4 *Diffusion ACAS*. Une diffusion ACAS doit être effectuée nominalement toutes les 8 à 10 s à pleine puissance depuis l'antenne supérieure. Les installations à antennes directives doivent fonctionner de manière que la couverture circulaire complète soit assurée nominalement au moins toutes les 8 à 10 s.
- Note.— Du fait d'une diffusion, les autres transpondeurs mode S acceptent l'interrogation sans répondre et présentent la teneur de cette interrogation avec champ MU (§ 4.3.8.4.2.3) à l'interface données de sortie du transpondeur. La combinaison UDS1 = 3, UDS2 = 2 permet de reconnaître les données comme étant une diffusion ACAS contenant l'adresse à 24 bits de l'aéronef ACAS interrogateur. Cela permet à chaque ACAS de déterminer le nombre d'autres ACAS se trouvant à sa portée afin de limiter le brouillage. Le format du champ MU est décrit au § 4.3.8.4.2.3.
 - 4.3.7.1.3 SURVEILLANCE DES MESSAGES ADS-B PROVENANT DES AERONEFS INTRUS DANS LE CAS DES SYSTEMES CONFORMES A L'ACAS X :
 - 4.3.7.1.3.1 Détection. L'ACAS doit contrôler les squitters longs 1 090 MHz.
 - 4.3.7.1.3.2 L'ACAS doit recevoir et utiliser les messages transmis sur squitter long 1 090 MHz qui contiennent des renseignements ADS-B concernant la position en vol et à la surface, la vitesse de vol. l'état et la situation de la cible et l'état opérationnel de l'aéronef.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date Page 20 de 68

Janvier 2016

4.3.7.2 PROTOCOLES DE COORDINATION AIR-AIR

- Note 1.— Les dispositions de la présente section s'appliquent aux aéronefs qui assurent la coordination avec les aéronefs équipés ACAS en utilisant des interrogations/réponses mode S discrètes 1 030/1 090 MHz.
- Note 2.— L'équipement ACAS qui n'est pas capable d'utiliser les interrogations/réponses mode S discrètes 1 030/1 090 MHz et qui fera appel à l'ADS-B pour transmettre le plan de coordination applicable est en cours d'élaboration. Les systèmes conformes à l'ACAS X offrent une capacité permettant la coordination avec les menaces dotées d'un tel équipement. Pour de plus amples renseignements, voir la section 2.2.3.9.3.1 de la spécification RTCA/DO-385 ou EUROCAE/ED-256.
- 4.3.7.2.1 Interrogations de coordination. L'ACAS doit émettre des interrogations UF = 16 (Chapitre 3, § 3.1.2.3.2, Figure 3-7) avec AQ = 0 et RL = 1 lorsqu'un autre aéronef signalant RI = 3 ou 4 est déclaré menaçant (§ 4.3.4). Le champ MU doit contenir le message de résolution dans les sous-champs spécifiés au § 4.3.8.4.2.3.2.
- Note 1.— Le but d'une interrogation UF = 16 avec AQ = 0 et RL = 1 est d'entraîner une réponse DF = 16 de l'autre aéronef.
- Note 2.— L'aéronef qui signale RI = 3 ou RI = 4 est un aéronef équipé d'un ACAS en fonctionnement qui a une capacité de résolution uniquement dans le plan vertical ou dans les plans vertical et horizontal, respectivement.
 - 4.3.7.2.2 Réponse de coordination. Ces protocoles sont décrits au § 4.3.11.3.2.
 - 4.3.7.3 PROTOCOLES DE COMMUNICATION ENTRE ACAS ET STATIONS SOL
- 4.3.7.3.1 Comptes rendus d'avis de résolution, destinés aux stations sol mode S. Ces protocoles sont décrits au § 4.3.11.4.1.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 21 de 68

Janvier 2016

4.3.7.3.2 Diffusions d'avis de résolution. Des diffusions d'avis de résolution doivent être faites à pleine puissance depuis l'antenne inférieure, à intervalles gigués. La diffusion d'avis de résolution doit comprendre le champ MU spécifié au § 4.3.8.4.2.3.4. Elle doit indiquer l'avis de résolution en vigueur. Les installations à antennes directives doivent fonctionner de telle façon que la couverture circulaire soit assurée.

Note.— L'intervalle gigué nominal des diffusions d'avis de résolution est de 8 s pour la majorité des systèmes ACAS traditionnels et de 1 s dans le cas des systèmes conformes à l'ACAS X.

- 4.3.7.3.3 Compte rendu de possibilités de liaison de données. Ces protocoles sont décrits au § 4.3.11.4.2.
 - 4.3.7.3.4 Réglage du niveau de sensibilité de l'ACAS.
- 4.3.7.3.4.1 Systèmes conformes au TCAS version 7.1 : L'ACAS doit donner suite à une commande de SLC dans le seul cas où le sous-champ TMS (Chapitre 3, § 3.1.2.6.1.4.1) a la valeur 0 et DI est égal à 1 ou 7 dans la même interrogation.
- 4.3.7.3.4.2 Systèmes conformes à l'ACAS X : L'ACAS doit recevoir toutes les commandes de SLC émanant des stations sol mode S mais ne doit pas utiliser les valeurs de niveau de sensibilité.

4.3.8 Formats de signal

4.3.8.1 Signaux RF

Les caractéristiques RF de tous les signaux ACAS doivent être conformes aux spécifications énoncées au Chapitre 3, § 3.1.1.1 à 3.1.1.6, et Chapitre 3, 3.1.2.1 à 3.1.2.5 et 3.1.2.8.

4.3.8.2 RELATION ENTRE FORMATS DE SIGNAL ACAS ET MODE S

Note.— L'ACAS utilise les transmissions mode S pour la surveillance et les communications. Les fonctions de communication air-air ACAS permettent de coordonner les décisions relatives aux avis de résolution avec les menaces dotées d'ACAS. Les fonctions de communication air-sol ACAS permettent de communiquer les avis de résolution.

4.3.8.3 Conventions en matière de format de signal

Le codage des données de tous les signaux ACAS doit être conforme aux spécifications énoncées au Chapitre 3, § 3.1.2.3.

Note.— Dans les transmissions air-air utilisées par l'ACAS, les interrogations transmises sur 1 030 MHz s'appellent transmissions montantes et renferment des codes de format montant (UF). Les réponses reçues sur 1 090 MHz s'appellent transmissions descendantes et renferment des codes de format descendant (DF).

4.3.8.4 DESCRIPTION DES CHAMPS

- Note 1.— La Figure 4-1 indique les formats de surveillance et de communication air-air utilisés par l'ACAS qui ne sont pas entièrement décrits au Chapitre 3, § 3.1.2.
- Note 2.— Le présent paragraphe définit les champs mode S (et leurs sous-champs) que l'ACAS traite pour accomplir les fonctions ACAS. Au Chapitre 3, § 3.1.2.6, dans les descriptions de certains des champs ACAS (champs qui servent également à d'autres fonctions SSR mode S), quelques codes ACAS ne sont pas assignés.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date Page 22 de 68

Janvier 2016

Ces codes sont assignés au § 4.3.8.4.1. Les champs et sous-champs utilisés seulement par l'équipement ACAS sont assignés au § 4.3.8.4.2.

Note 3.— La convention de numérotation des bits utilisée au § 4.3.8.4 représente la numérotation des bits d'un bout à l'autre du format montant ou descendant plutôt que celle des bits à l'intérieur de champs ou souschamps individuels.

Format montant:

UF = 0	00000	3	RL:1		4	AQ:1	DS:8	10	AP:24
UF = 16	10000	3	RL:1	4	AQ:1		18	MU:56	AP:24

Format descendant:

DF = 0	00000	VS:1	CC:1	1	SL:3	3	2	R	1:4	2	AC:13	AP:24
DF = 16	10000	VS:1	7	2	SL:3	2	RI	4	2	AC:13	MV:56	AP:24

Figure 4-1. Formats de surveillance et de communication utilisés par l'ACAS

4.3.8.4.1 CHAMPS ET SOUS-CHAMPS DEFINIS AU CHAPITRE 3, § 3.1.2

Note.— Les codes utilisés dans les champs et sous-champs mission dits « réservés à l'ACAS », au Chapitre 3, § 3.1.2, sont spécifiés dans le présent paragraphe.

4.3.8.4.1.1 DR (demande descendante). Le codage de ce champ doit être le suivant :

Codage

0-1	Voir Chapitre 3, § 3.1.2.6.5.2
2	Message ACAS disponible
3	Messages Comm-B et ACAS disponibles
4-5	Voir Chapitre 3, § 3.1.2.6.5.2
6	Message diffusé Comm-B 1 disponible et message ACAS disponible
7	Message diffusé Comm-B 2 disponible et message ACAS disponible
8-31	Voir Chapitre 3, § 3.1.2.6.5.2

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 23 de 68

Janvier 2016

4.3.8.4.1.2 RI (information de réponse air-air). Le codage de ce champ doit être le suivant :

Codage	
0	Pas d'ACAS en fonctionnement
1	Non attribué
2	ACAS dont le moyen de résolution est neutralisé
3	ACAS avec moyen de résolution dans le plan vertical seulement et moyen d'utiliser les interrogations/réponses mode S discrètes 1 030/1 090 MHz pour la coordination
4	ACAS avec moyen de résolution dans le plan vertical et dans le plan horizontalet moyen d'utiliser les interrogations/réponses mode S discrètes 1 030/1 090 MHz pour la coordination
5-6	Réservé à l'ACAS passif
7	Non assignés
8-15	Voir Chapitre 3, § 3.1.2.8.2.2

Le bit 14 du format de réponse contenant ce champ doit être identique au bit AQ de l'interrogation. Le champ RI indique qu'il n'y a pas d'ACAS en fonctionnement (RI = 0) si l'unité ACAS est en panne ou en attente. Il indique un ACAS dont le moyen de résolution est neutralisé (RI = 2) si le niveau de sensibilité est de 2 ou si seul le mode TA a été choisi.

Note.— Les codes 0-7 dans le champ RI indiquent que la réponse est une réponse de poursuite et donnent les possibilités ACAS de l'aéronef interrogé. Les codes 8-15 indiquent que la réponse est une réponse d'acquisition et donnent la vitesse vraie maximale de l'aéronef interrogé.

4.3.8.4.1.3 RR (demande de réponse). Le codage de ce champ doit être le suivant :

Codage

0-18	Voir Chapitre 3, § 3.1.2.6.1.2
19	Transmettez un compte rendu d'avis de résolution
20-31	Voir Chapitre 3, § 3.1.2.6.1.2
4.3.8.4.2	CHAMPS ET SOUS-CHAMPS ACAS

Note.— Les paragraphes qui suivent indiquent l'emplacement et le codage des champs et sous-champs qui ne sont pas définis au Chapitre 3, § 3.1.2, mais sont utilisés par les aéronefs dotés d'ACAS.

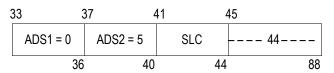
- 4.3.8.4.2.1 Systèmes conformes au TCAS version 7.1 : Sous-champ de MA
- 4.3.8.4.2.1.1 ADS (sous-champ définition A). Ce sous-champ de 8 bits (33-40) définit le reste de MA.

Note.— Pour que le codage soit facile, ADS est exprimé sous la forme de deux groupes de 4 bits chacun, ADS1 et ADS2.

- 4.3.8.4.2.1.2 Lorsque ADS1 = 0 et ADS2 = 5, le champ MA renferme le sous-champ suivant :
- 4.3.8.4.2.1.3 SLC (commande de réglage du niveau de sensibilité [SLC] de l'ACAS). Ce sous-champ de 4 bits (41-44) exprime une commande de réglage du niveau de sensibilité adressée à l'ACAS de l'aéronef de référence.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision


Chapitre 4 Edition : Date Page 24 de 68

Janvier 2016

Codage

0	Aucune commande n'a été émise
1	Non assigné
2	Réglez le niveau de sensibilité ACAS à 2
3	Réglez le niveau de sensibilité ACAS à 3
4	Réglez le niveau de sensibilité ACAS à 4
5	Réglez le niveau de sensibilité ACAS à 5
6	Réglez le niveau de sensibilité ACAS à 6
7-14	Non assignés
15	Annulez la commande de SLC précédente de la station dont provient le présent message

Note 1.— Dans une commande de réglage du niveau de sensibilité, la structure de MA est la suivante :

Note 2.— Les systèmes conformes à l'ACAS X reçoivent les commandes de SLC mais n'utilisent pas les valeurs de niveau de sensibilité.

4.3.8.4.2.2 Sous-champs de MB

Note.— Le § 4.3.8.4.2.2.1 est applicable aux systèmes conformes au TCAS version 7.1, et le § 4.3.8.4.2.2.2, aux systèmes conformes à l'ACAS X. Le § 4.3.8.4.2.2.3 est applicable à la fois aux systèmes conformes au TCAS version 7.1 et aux systèmes conformes à l'ACAS X.

4.3.8.4.2.2.1 Systèmes conformes au TCAS version 7.1 : Sous-champs de MB dans un compte rendu d'avis de résolution. Lorsque BDS1 = 3 et BDS2 = 0, MB doit renfermer les sous-champs indiqués ci-dessous.

Note 1.— Les spécifications relatives à la communication d'informations sur les avis de résolution actuels ou récents figurent au § 4.3.11.4.1.

Note 2.— Un avis de résolution est considéré comme étant « à franchissement » lorsqu'il est prévu que l'aéronef de référence franchisse l'altitude de l'intrus avant le rapprochement maximal, par exemple, qu'il passe pardessus une menace alors située plus haut que lui. Un avis de résolution est considéré comme étant « à franchissement », que le mot « crossing » soit ou non compris dans l'annonce sonore.

4.3.8.4.2.2.1.1 ARA (avis de résolution en vigueur). Ce sous-champ de 14 bits (41-54) indique les caractéristiques de l'avis de résolution (s'il y en a) généré par l'ACAS associé avec le transpondeur émetteur de ce sous-champ [§ 4.3.6.2.1, alinéa a)]. Les bits du sous-champ ARA ont la signification déterminée par la valeur du sous-champ MTE (§ 4.3.8.4.2.2.1.4), et la valeur du bit 41 concerne les avis de résolution

dans le plan vertical. Le bit 41 a la signification suivante :

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition :

Date

Page 25 de 68

Janvier 2016

Codage

- 0 Il y a plus d'une menace et l'avis de résolution vise à établir une séparation audessous de certaines menaces et au-dessus de certaines autres, ou aucun avis de résolution n'a été généré (lorsque MTE = 0)
- 1 Il n'y a qu'une menace ou l'avis de résolution vise à établir une séparation dans la même direction pour toutes les menaces

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 26 de 68

Janvier 2016

Lorsque le bit 41 a la valeur 1 et que MTE = 0 ou 1, les bits 42-47 ont la signification suivante :

Bit	Codage	
42	0	L'avis de résolution est préventif
	1	L'avis de résolution est correctif
43	0	Un avis de résolution « vers le haut » a été généré
	1	Un avis de résolution « vers le bas » a été généré
44	0	L'avis de résolution ne vise pas à augmenter le taux de variation d'altitude
	1	L'avis de résolution vise à augmenter le taux de variation d'altitude
45	0	L'avis de résolution ne représente pas une inversion
	1	L'avis de résolution représente une inversion
46	0	L'avis de résolution ne préconise pas de franchissement d'altitude
	1	L'avis de résolution préconise un franchissement d'altitude
47	0	L'avis de résolution indique une limite de vitesse verticale
	1	L'avis de résolution est positif
48-54		Réservés à l'ACAS III
		·

Lorsque le bit 41 du sous-champ ARA a la valeur 0 et que MTE = 1, les bits 42-47 ont la signification suivante :

Bit	Codage	
42	0	L'avis de résolution n'exige pas de correction dans le sens de montée
	1	L'avis de résolution exige une correction dans le sens de montée
43	0	L'avis de résolution n'exige pas de de montée positive
	1	L'avis de résolution exige une montée positive
44	0	L'avis de résolution n'exige pas de correction dans le sens de la descente
	1	L'avis de résolution exige une correction dans le sens de la descente
45	0	L'avis de résolution n'exige pas de descente positive
	1	L'avis de résolution exige une descente positive
46	0	L'avis de résolution n'exige pas de franchissement d'altitude
	1	L'avis de résolution exige un franchissement d'altitude
47	0	L'avis de résolution ne représente pas une inversion
	1	L'avis de résolution représente une inversion
48-54		Réservés à l'ACAS III

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 27 de 68

Janvier 2016

Note.— Lorsque le bit 41 du sous-champ ARA a la valeur 0 et que MTE = 0, aucun avis de résolution dans le plan vertical n'a été généré.

- 4.3.8.4.2.2.1.2 RAC (enregistrement d'avis de résolution complémentaires). Ce sous-champ de 4 bits (55-58) indique tous les avis de résolution complémentaires actuellement en vigueur (s'il y en a) reçus d'autres aéronefs ACAS. Les bits du sous-champ RAC ont la signification suivante :
 - Bit Avis de résolution complémentaire
 - 55 Ne passez pas par-dessous
 - 56 Ne passez pas par-dessus
 - 57 Ne virez pas à gauche
 - 58 Ne virez pas à droite

Un bit positionné à 1 indique que l'avis de résolution complémentaire dont il s'agit est en vigueur. Un bit positionné à 0 indique que l'avis de résolution complémentaire dont il s'agit n'est pas en vigueur.

4.3.8.4.2.2.1.3 *RAT (indicateur de fin d'avis de résolution)*. Ce sous-champ de 1 bit (59) indique le moment où un avis de résolution généré plus tôt par l'ACAS a pris fin.

Codage

- 0 L'ACAS génère actuellement l'avis de résolution indiqué dans le sous-champ ARA
- 1 L'avis de résolution indiqué dans le sous-champ ARA a pris fin (§ 4.3.11.4.1)
- Note 1.— Après que l'ACAS a mis fin à un avis de résolution, ce dernier doit encore être signalé pendant 18 ± 1 s (§ 4.3.11.4.1) par le transpondeur mode S. L'indicateur de fin d'avis de résolution peut servir, par exemple, à assurer le retrait en temps utile d'une indication d'avis de résolution affichée à l'écran d'un contrôleur de la circulation aérienne, ou à des évaluations de la durée des avis de résolution dans un espace aérien donné.
- Note 2.— Un avis de résolution peut prendre fin pour diverses raisons : de façon normale, lorsque le conflit a été résolu et que la menace s'éloigne en distance ; ou lorsque le transpondeur mode S de la menace, pour une raison quelconque, cesse de signaler son altitude pendant le conflit. Dans chacun de ces cas, l'indicateur de fin d'avis de résolution sert à indiquer que l'avis de résolution a été retiré.
- 4.3.8.4.2.2.1.4 MTE (rencontre de menace multiple). Ce sous-champ de 1 bit (60) indique le cas échéant que la logique de résolution de conflit ACAS traite actuellement deux ou plusieurs menaces simultanées.

Codage

- 0 La logique de résolution traite actuellement une menace (lorsque le bit 41 du souschamp ARA a la valeur 1); la logique de résolution ne traite actuellement aucune menace (lorsque le bit 41 du sous-champ ARA a la valeur 0)
- 1 La logique de résolution traite actuellement deux ou plusieurs menaces simultanées
- 4.3.8.4.2.2.1.5 *TTI* (sous-champ indicateur de type de menace). Ce sous-champ de 2 bits (61-62) doit indiquer le type de données d'identité contenues dans le sous-champ TID.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 28 de 68

Janvier 2016

Codage

- 0 Aucune donnée d'identité dans le sous-champ TID
- 1 Le sous-champ TID renferme une adresse de transpondeur mode S
- 2 Le sous-champ TID renferme des données d'altitude, de distance et de gisement
- 3 Non assigné
- 4.3.8.4.2.2.1.6 *TID* (sous-champ données d'identité de menace). Ce sous-champ de 26 bits (63-88) doit renfermer l'adresse d'aéronef de la menace, ou l'altitude, la distance et le gisement de la menace si celle-ci n'est pas dotée du mode S. Si deux ou plusieurs menaces sont traitées simultanément par la logique de résolution ACAS, le sous-champ TID doit renfermer les données d'identité ou de position de la menace déclarée le plus récemment. Si TTI = 1, TID doit renfermer dans les bits 63 à 86 l'adresse d'aéronef de la menace, et les bits 87 et 88 doivent être positionnés à 0. Si TTI = 2, TID doit renfermer les trois sous-champs suivants.
- 4.3.8.4.2.2.1.6.1 *TIDA* (sous-champ données d'identité de menace altitude). Ce sous-champ de 13 bits (63-75) doit renfermer le code d'altitude mode C signalé le plus récemment de la menace.

Codage

Bit 63 64 65 66 67 68 69 70 71 72 73 75 Bit de code mode C C1 A1 C2 A2 C4 A4 0 B1 D1 B2 D2 **B**4 D4

4.3.8.4.2.2.1.6.2 *TIDR* (sous-champ données d'identité de menace — distance). Ce sous-champ de 7 bits (76-82) doit renfermer la valeur la plus récente de la distance à laquelle se trouve la menace, estimée par l'ACAS.

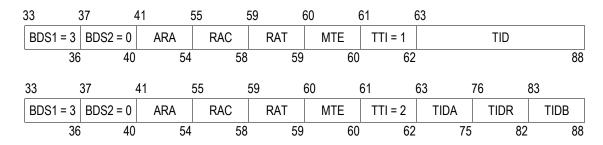
Codage (n)

- n Distance estimée (NM)
- O Aucune valeur estimée de la distance n'est disponible
- 1 Moins de 0,05
- 2-126 $(n-1)/10 \pm 0.05$
- 127 Plus de 12,55
- 4.3.8.4.2.2.1.6.3 TIDB (sous-champ données d'identité de menace gisement). Ce sous-champ de 6 bits (83-88) doit renfermer la valeur estimée la plus récente du gisement de l'aéronef menaçant, par rapport à l'aéronef ACAS.

Codage (n)

- n Gisement estimé (degrés)
- O Aucune valeur estimée du gisement n'est disponible
- 1-60 Entre 6(*n*–1)et 6*n*
- 61-63 Non assignés

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV


Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 29 de 68

Janvier 2016

Note.— Dans un compte rendu d'avis de résolution, la structure de MB est la suivante :

- 4.3.8.4.1.1.1 Systèmes conformes à l'ACAS X : Sous-champs de MB dans un compte rendu d'avis de résolution. Lorsque BDS1 = 3 et BDS2 = 0, MB doit renfermer les sous-champs indiqués ci-dessous.
- 4.3.8.4.1.1.1.1 ARA (avis de résolution en vigueur). Ce sous-champ de 10 bits (41-50) doit indiquer l'avis de résolution actuellement en vigueur (s'il y en a) généré par l'ACAS X de l'aéronef de référence à propos d'un ou de plusieurs aéronefs menaçants.

Le sous-champ ARA est lui-même divisé comme suit :

- a) AVRA (avis de résolution dans le plan vertical). Ce sous-champ de 7 bits (41-47) renferme la composante verticale de l'avis de résolution en vigueur, définie ci-dessous ;
- b) AHRA (avis de résolution dans le plan horizontal). Ce sous-champ de 3 bits (48-50) renferme la composante horizontale de l'avis de résolution en vigueur. Dans le cas des systèmes conformes à l'ACAS X, AHRA = 0.

Les bits 41-50 ont la signification suivante :

Bit	Codage	
41	0	Des sens verticaux différents ont été générés dans une rencontre de menace multiple (lorsque MTE = 1) ; ou aucun avis de résolution n'a été généré (lorsque MTE = 0)
	1	Le même sens vertical a été généré dans une rencontre de menace simple ou multiple
42	0	L'avis de résolution n'est pas à franchissement
	1	L'avis de résolution est à franchissement
43	0	Un avis de résolution « vers le haut » a été généré (cà-d. l'intention de l'aéronef de référence est de passer par-dessus la menace)
	1	Un avis de résolution « vers le bas » a été généré (cà-d. l'intention de l'aéronef de référence est de passer par-dessous la menace)
44		Bit de force 1
45		Bit de force 2
46		Bit de force 3
47		Bit de force 4
48-50	0	AHRA

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 30 de 68

Janvier 2016

Note. — Un avis de résolution est considéré comme étant « à franchissement » lorsqu'il est prévu que l'aéronef de référence franchisse l'altitude de l'intrus avant le rapprochement maximal, par exemple, qu'il passe pardessus une menace alors située plus haut que lui. Un avis de résolution est considéré comme étant « à franchissement », que le mot « crossing » soit ou non compris dans l'annonce sonore.

Les bits de force indiqués aux positions 44 à 47 ont la signification suivante :

ı	Bit de	forc	е		
1	2	3	4		
0	0	0	0	0	Hors conflit
0	0	0	1	1	Contrôle de la vitesse verticale
0	0	1	0	2	Mise en palier ; atténuation d'avis de résolution positif
0	0	1	1	3	Mise en palier ; correctif en montée/descente
0	1	0	0	4	Montée/descente à 1 500 ft/min
0	1	0	1	5	Inversion de la montée/descente
0	1	1	0	6	Augmentation de la montée/descente
0	1	1	1	7	Maintien du taux ; au taux actuel > 1 500 ft/min
1	0	0	0	8	Inversion pour maintenir
1	0	0	1	9	Mise en palier ; inversion d'un avis de résolution négatif correctif
1	0	1	0	10	Contrôle de la vitesse verticale ; à la suite d'un avis de résolution « vers le bas », descente inhibée
1	0	1	1	11	Contrôle de la vitesse verticale ; inversion d'un avis de résolution négatif préventif
1	1	0	0	12	Non assigné
1	1	0	1	13	Non assigné
1	1	1	0	14	Mise en palier préventive en cas de menace multiple (MTLO) pendant le vol en palier
1	1	1	1	15	MTLO corrective pendant la montée/descente

Note.— Pour la MTLO, l'aéronef de référence dont la vitesse verticale est comprise entre -500 ft/min et +500 ft/min est « en palier », l'aéronef de référence dont la vitesse verticale est plus élevée que+500 ft/min est en « montée », et l'aéronef de référence dont la vitesse verticale est plus élevée que -500 ft/min est en « descente »

4.3.8.4.2.2.2 LDI (inhibition de descente à basse altitude). Ce sous-champ de 2 bits (51-52) est issu de la valeur de l'altimètre radar de l'aéronef de référence et indique si l'aéronef de référence est dans une région où des inhibitions de descente à basse altitude peuvent être appliquées. Le codage a la signification suivante :

Bits 51-52

Codage	
0	Pas d'inhibition de descente
1	Inhibition des avis de résolution recommandant une descente accélérée
2	Inhibition des avis de résolution recommandant une descente accélérée et des avis de résolution vers le bas
3	Inhibition de tous les avis de résolution

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 31 de 68

Janvier 2016

4.3.8.4.2.2.3 RMF (format de message d'avis de résolution). Ce sous-champ de 2 bits (53-54) indique le système d'évitement de collision (CA) qui génère les bits 41 à 88 du message RF. Le codage a la signification suivante:

Bits 53-54

Codage

- 0 TCAS II (toutes versions)
- 1 Système conforme à l'ACAS X
- 2 Réservé à l'ACAS III
- 3 Non assigné

4.3.8.4.2.2.2.4 RAC (enregistrement d'avis de résolution complémentaire). Ce sous-champ de 4 bits (55-58) indique tous les avis de résolution complémentaires actuellement en vigueur (s'il y en a) reçus d'autres aéronefs ACAS. Les bits du sous-champ RAC ont la signification suivante :

Bit	Avis de résolution complémentaire
55	Ne passez pas par-dessous
56	Ne passez pas par-dessus
57	Réservé pour la coordination dans le plan horizontal
58	Réservé pour la coordination dans le plan horizontal

Un bit positionné à 1 indique que l'avis de résolution complémentaire dont il s'agit est en vigueur. Un bit positionné à 0 indique que l'avis de résolution complémentaire dont il s'agit n'est pas en vigueur.

4.3.8.4.2.2.5 RAT (*indicateur de fin d'avis de résolution*). Ce sous-champ de 1 bit (59) indique le moment où un avis de résolution généré auparavant par l'ACAS a pris fin.

Codage

- 0 L'ACAS génère actuellement l'avis de résolution indiqué dans le sous-champ ARA
- 1 L'avis de résolution indiqué dans le sous-champ ARA a pris fin (§ 4.3.11.4.1)

Note 1.— Après que l'ACAS a mis fin à un avis de résolution, ce dernier doit encore être signalé pendant 18 ± 1 s (§ 4.3.11.4.1) par le transpondeur mode S. L'indicateur de fin d'avis de résolution peut servir, par exemple, à assurer le retrait en temps utile d'une indication d'avis de résolution affichée à l'écran d'un contrôleur de la circulation aérienne, ou à des évaluations de la durée des avis de résolution dans un espace aérien donné.

- Note 2.— Un avis de résolution peut prendre fin pour diverses raisons : de façon normale, lorsque le conflit a été résolu et que la menace s'éloigne en distance ; ou lorsque le transpondeur mode S de la menace, pour une raison quelconque, cesse de signaler son altitude pendant le conflit. Dans chacun de ces cas, l'indicateur de fin d'avis de résolution sert à indiquer que l'avis de résolution a été retiré.
- 4.3.8.4.2.2.2.6 MTE (rencontre de menace multiple). Ce sous-champ de 1 bit (60) indique le cas échéant que la logique de résolution de conflit ACAS traite actuellement deux ou plusieurs menaces simultanées.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 32 de 68

Janvier 2016

Codage

- La logique de résolution traite actuellement une menace (lorsque le bit 41 du sous-champ ARA a la valeur 1) ; la logique de résolution ne traite actuellement aucune menace (lorsque le bit 41 du sous-champ ARA a la valeur 0)
- 1 La logique de résolution traite actuellement deux ou plusieurs menaces simultanées
- 4.3.8.4.2.2.2.7 CNT (bit de suite). Ce sous-champ de 1 bit (61) indique si un message RF constituant une suite est en cours d'établissement pour fournir des renseignements supplémentaires.

Codage

- 0 Il n'existe pas de message RF constituant une suite
- 1 Il existe un message RF constituant une suite
- 4.3.8.4.2.2.2.8 TTI (sous-champ indicateur de type de menace). Ce sous-champ de 1 bit (62) indique le type de données d'identité contenues dans le sous-champ TID.

Codage

- 0 Le sous-champ TID renferme des données d'altitude, de distance et de gisement
- 1 Le sous-champ TID renferme une adresse d'aéronef à 24 bits
- 4.3.8.4.2.2.2.9 TID (sous-champ données d'identité de menace). Ce sous-champ de 24 bits (63-86) doit renfermer l'adresse d'aéronef à 24 bits de la menace, ou l'altitude, la distance et le gisement si elle n'est pas dotée du mode S. Si deux ou plusieurs menaces sont traitées simultanément par la logique de résolution ACAS, le sous-champ TID doit renfermer les données d'identité ou de position de la menace déclarée le plus récemment. Si TTI = 1, TID doit renfermer dans les bits 63 à 86 l'adresse d'aéronef de la menace. Si TTI = 2, TID doit renfermer les trois sous-champs suivants (voir § 4.3.8.4.2.2.2.8).
- 4.3.8.4.2.2.9.1 TIDA (sous-champ données d'identité de menace altitude). Ce sous-champ de 11 bits (63-73) renferme l'altitude de la menace estimée le plus récemment par l'ACAS, exprimée sous forme binaire avec une résolution de 100 ft, comme suit :

Codage

- 0 Aucune donnée
- 1 Altitude < -950 ft
- 2 -950 ft ≤ Altitude < -850 ft
- 3 -850 ft ≤ Altitude < -750 ft

4...

4.3.8.4.2.2.2.9.2 TIDR (sous-champ données d'identité de menace — distance). Ce sous-champ de 7 bits (74-80) renferme la distance de la menace estimée le plus récemment par l'ACAS.

Codage (n)

n Distance estimée (NM)

O Aucune valeur estimée de la distance n'est disponible

1 Moins de 0,05 2-126 $(n-1)/10 \pm 0,05$ 127 Plus de 12,55

4.3.8.4.2.2.2.9.3 TIDB (sous-champ données d'identité de menace — gisement). Ce sous-champ de 6

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 33 de 68

Janvier 2016

bits (81-86) renferme le gisement de la menace estimé le plus récemment (par rapport au cap de l'aéronef ACAS).

Codage (n)

n Gisement estimé (degrés)

0 Aucune estimation de gisement disponible

1-60 Entre 6(n-1) et 6n

61-63 Non assigné

4.3.8.4.2.2.2.10 comme suit :

DSI (indicateur de désignation). Ce sous-champ de 1 bit (87) doit être codé

Codage

- La menace définie dans le sous-champ TID n'est pas désignée pour la variante Xo, ou la désignation n'est pas appliquée
- 1 La menace définie dans le sous-champ TID est désignée pour la variante Xo, et la désignation est appliquée

4.3.8.4.2.2.2.11 SPI (indicateur de suppression). Ce sous-champ de 1 bit (88) doit être codé comme suit :

Rencontre de menace simple :

Codage

- 0 L'avis de résolution n'est pas supprimé
- 1 L'avis de résolution est supprimé (non annoncé à l'équipage de conduite)

En cas de rencontre de menace multiple, la suppression ne s'applique pas. Le sous-champ SPI doit renfermer donc les désignations suivantes :

Codage

- 0 Aucune menace autre que celle définie dans le sous-champ TID est désignée pour la variante Xo
- 1 Une autre menace est désignée pour la variante Xo, et la désignation est appliquée

Note.— Dans le cas des systèmes conformes à l'ACAS X : Sous-champs de MB dans un compte rendu d'avis de résolution.

33	37	41	51	53	55	59	60	61	62	63	74	81	87	88	
BDS1 = 3	BDS2 = 0	ARA	LDI	RMF	RAC	RAT	MTE	CNT	TTI = 0	TIDA	TIDR	TIDB	DSI	SPI	l
3	4	Ę	5	5 5	5	5	6	6	6	7	8	8	8	8	
6	0	() 2	2 4	. 8	9	0	1	2	3	0	6	7	8	
3	3	}	5	5	5	5	6	6	6		63		8	8	
3	7	•	1	3	5	9	0	1	2		03	1	7	8	
BDS1 = 3	BDS2 = 0	ARA	LDI	RMF	RAC	RAT	MTE	CNT	TTI = 1		TID		DSI	SPI	
36	40	50	52	54	58	59	60	61	62	•	86		87	88	

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date Page 34 de 68

Janvier 2016

4.3.8.4.2.2.3 Sous-champs de MB dans un compte rendu de possibilités de liaison de données. Lorsque BDS1 = 1 et BDS2 = 0, les configurations binaires ci-dessous doivent être communiquées au transpondeur pour son compte rendu de possibilités de liaison de données :

Bit	Codage	
43-46	0000	Systèmes conformes au TCAS version 7.1 et autres systèmes définis par les bits 71 et
	0001	ACAS Xa (RTCA/DO-385 et EUROCAE/ED-256)
	0010 à 1111	Réservés à l'ACAS III
48	0	ACAS en panne ou en mode « attente »
	1	ACAS en fonctionnement
69	0	Surveillance hybride non opérationnelle
	1	Surveillance hybride présente et opérationnelle
70	0	ACAS générant des avis de trafic seulement (TA)
	1	ACAS générant des avis de trafic (TA) et des avis de résolution (RA)
Bit 72	Bit 71	Version de l'ACAS
0	0	RTCA/DO-185 (pré-ACAS)
0	1	RTCA/DO-185A
1	0	RTCA/DO-185B et EUROCAE ED 143
1	1	Tous les systèmes plus récents (voir Note 3 et § 4.3.8.4.2.8)

- Note 1.— Un sommaire des sous-champs de MB dans un compte rendu de possibilités de liaison de données figure au Chapitre 3, § 3.1.2.6.10.2.2.
- Note 2.— L'emploi de la surveillance hybride pour limiter les interrogations actives de l'ACAS est décrit au § 4.5.1. La capacité de prendre en charge le décodage des messages DF = 17 sur squitter long n'est pas, à elle seule, suffisante pour positionner le bit 69.
- Note 3.— Les futures versions de l'ACAS seront identifiées par les numéros de pièce et les numéros de version de logiciel spécifiés dans les registres E5₁₆ et E6₁₆.
- 4.3.8.4.2.3 *Champ MU.* Ce champ de 56 bits (33-88) faisant partie des interrogations de surveillance air-air longues (Figure 4-1) sert à transmettre des messages de résolution, des diffusions ACAS et des diffusions d'avis de résolution.
 - 4.3.8.4.2.3.1 UDS (sous-champ définition U). Ce sous-champ de 8 bits (33-40) définit le reste de MU.
- Note.— Pour que le codage soit facile, UDS est exprimé sous la forme de deux groupes de 4 bits chacun, UDS1 et UDS2.
- 4.3.8.4.2.3.2 Sous-champs de MU dans un message de résolution. Lorsque UDS1 = 3 et UDS2 = 0, le champ MU doit renfermer les sous-champs suivants :
- 4.3.8.4.2.3.2.1 *MTB* (bit de menace multiple). Ce sous-champ de 1 bit (42) indique la présence ou l'absence de menaces multiples.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 35 de 68

Janvier 2016

Codage

- 0 L'ACAS interrogateur ne détecte pas plus d'une menace
- 1 L'ACAS interrogateur détecte plus d'une menace

4.3.8.4.2.3.2.2 VRC (avis de résolution complémentaire dans le plan vertical). Ce sous-champ de 2 bits (45-46) indique un avis de résolution complémentaire dans le plan vertical se rapportant à l'aéronef destinataire.

Codage

- 0 Aucun avis de résolution complémentaire dans le plan vertical n'a été envoyé
- 1 Ne passez pas par-dessous
- 2 Ne passez pas par-dessus
- 3 Non assigné

4.3.8.4.2.3.2.3 *CVC* (annulation d'avis de résolution complémentaire dans le plan vertical). Ce souschamp de 2 bits (43-44) signale l'annulation d'un avis de résolution complémentaire dans le plan vertical communiqué précédemment à l'aéronef destinataire. Ce sous-champ doit être positionné à 0 pour une nouvelle menace.

Codage

- 0 Aucune annulation
- 1 Annulez « Ne passez pas par-dessous » transmis précédemment
- 2 Annulez « Ne passez pas par-dessus » transmis précédemment
- 3 Non assigné
- 4.3.8.4.2.3.2.4 *HRC* (avis de résolution complémentaire dans le plan horizontal). Ce sous-champ de 3 bits (50-52) indique un avis de résolution complémentaire dans le plan horizontal se rapportant à l'aéronef destinataire.

Codage

- O Aucun avis de résolution complémentaire dans le plan horizontal, ou aucun moyen de résolution dans le plan horizontal
- 1 L'autre ACAS doit virer à gauche ; ne virez pas à gauche
- 2 L'autre ACAS doit virer à gauche ; ne virez pas à droite
- 3 Non assigné
- 4 Non assigné
- 5 L'autre ACAS doit virer à droite ; ne virez pas à gauche
- 6 L'autre ACAS doit virer à droite ; ne virez pas à droite
- 7 Non assigné
- 4.3.8.4.2.3.2.5 CHC (annulation d'avis de résolution complémentaire dans le plan horizontal). Ce sous-champ de 3 bits (47-49) indique l'annulation d'un avis de résolution complémentaire dans le plan horizontal

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date Page 36 de 68

Janvier 2016

envoyé précédemment à l'aéronef destinataire. Ce sous-champ doit être positionné à 0 pour une nouvelle menace.

Codage

- O Aucune annulation, ou aucun moyen de résolution dans le plan horizontal
- 1 Annulez « Ne virez pas à gauche » transmis précédemment
- 2 Annulez « Ne virez pas à droite » transmis précédemment
- 3 7 Non assignés

4.3.8.4.2.3.2.6 *VSB* (sous-champ bits de sens vertical). Ce sous-champ de 4 bits (61-64) sert à protéger les données contenues dans les sous-champs CVC et VRC. Le code VSB doit être transmis pour chacune des 16 combinaisons possibles des bits 43 à 46 comme suit :

	C۷	/C	V	RC	VSB					
Codage	43	44	45	46	61	62	63	64		
0	0	0	0	0	0	0	0	0		
1	0	0	0	1	1	1	1	0		
2	0	0	1	0	0	1	1	1		
3	0	0	1	1	1	0	0	1		
4	0	1	0	0	1	0	1	1		
5	0	1	0	1	0	1	0	1		
6	0	1	1	0	1	1	0	0		
7	0	1	1	1	0	0	1	0		
8	1	0	0	0	1	1	0	1		
9	1	0	0	1	0	0	1	1		
10	1	0	1	0	1	0	1	0		
11	1	0	1	1	0	1	0	0		
12	1	1	0	0	0	1	1	0		
13	1	1	0	1	1	0	0	0		
14	1	1	1	0	0	0	0	1		
15	1	1	1	1	1	1	1	1		

Note.— Les bits du sous-champ VSB sont positionnés selon un code de Hamming distance 3 plus un bit de parité, ce qui permet de détecter jusqu'à trois erreurs dans les 8 bits transmis.

4.3.8.4.2.3.2.7 *HSB* (sous-champ bits de sens horizontal). Ce sous-champ de 5 bits (56-60) sert à protéger les données contenues dans les sous-champs CHC et HRC. Le code HSB doit être transmis pour chacune des 64 combinaisons possibles des bits 47 à 52 comme suit :

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

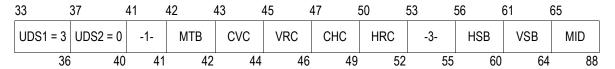
Chapitre 4 Edition : Date Page 37 de 68 1 Janvier 2016

		CHC	40	=0	HRC				HSB		
Codage 0	47 0	48 0	49 0	50 0	51 0	52 0	56 0	57 0	58 0	59 0	60 0
1	0	0	0	0	0	1	0	1	0	1	1
2 3	0	0 0	0 0	0 0	1 1	0 1	1	0 1	0 0	1 0	1 0
4	0	0	0	1	0	0	1	1	1	0	0
5	0	0	0	1	0	1	1	0	1	1	1
6 7	0	0 0	0 0	1 1	1 1	0 1	0	1 0	1 1	1 0	1 0
8	0	0	1	0	0	0	0	1	1	0	1
9 10	0	0 0	1 1	0 0	0 1	1 0	0	0 1	1 1	1 1	0 0
11	0	0	1	0	1	1	1	0	1	0	1
12	0	0	1	1	0	0	1	0	0	0	1
13 14	0	0 0	1 1	1 1	0 1	1 0	1 0	1 0	0 0	1 1	0 0
15	0	0	1	1	1	1	0	1	0	0	1
16 17	0	1 1	0 0	0 0	0 0	0 1	1	0 1	1 1	0 1	1 0
18	0	1	0	0	1	0	0	Ó	1	1	0
19	0	1	0	0	1	1	0	1	1	0	1
20 21	0	1 1	0 0	1 1	0 0	0 1	0	1 0	0 0	0 1	1 0
22	0	1	0	1	1	0	1	1	0	1	0
23 24	0	1 1	0 1	1 0	1 0	1 0	1	0 1	0 0	0 0	1 0
25	0	1	1	0	0	1	1	Ó	0	1	1
26	0	1	1	0	1	0	0	1	0	1	1
27 28	0	1 1	1 1	0 1	1 0	1 0	0	0 0	0 1	0 0	0 0
29	0	1	1	1	0	1	0	1	1	1	1
30 31	0	1 1	1 1	1 1	1 1	0 1	1	0 1	1 1	1 0	1 0
32	1	0	Ö	Ö	0	0	1	1	0	0	1
33	1	0	0	0	0 1	1	1	0	0	1	0
34 35	1 1	0 0	0 0	0 0	1	0 1	0	1 0	0 0	1 0	0 1
36	1	0	0	1	0	0	0	0	1	0	1
37 38	1 1	0 0	0 0	1 1	0 1	1 0	0	1 0	1 1	1 1	0 0
39	1	0	0	1	1	1	1	1	1	0	1
40 41	1 1	0 0	1 1	0 0	0 0	0	1	0	1	0	0 1
41	1	0	1	0	1	1 0	1 0	1 0	1 1	1 1	1
43	1	0	1	0	1	1	0	1	1	0	0

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

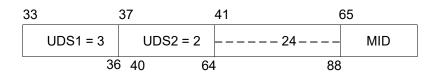
Chapitre 4 Edition : Date Page 38 de 68


Janvier 2016

		CHC			HRC				HSB		
Codage	47	48	49	50	51	52	56	57	58	59	60
44	1	0	1	1	0	0	0	1	0	0	0
45	1	0	1	1	0	1	0	0	0	1	1
46	1	0	1	1	1	0	1	1	0	1	1
47	1	0	1	1	1	1	1	0	0	0	0
48	1	1	0	0	0	0	0	1	1	0	0
49	1	1	0	0	0	1	0	0	1	1	1
50	1	1	0	0	1	0	1	1	1	1	1
51	1	1	0	0	1	1	1	0	1	0	0
52	1	1	0	1	0	0	1	0	0	0	0
53	1	1	0	1	0	1	1	1	0	1	1
54	1	1	0	1	1	0	0	0	0	1	1
55	1	1	0	1	1	1	0	1	0	0	0
56	1	1	1	0	0	0	0	0	0	0	1
57	1	1	1	0	0	1	0	1	0	1	0
58	1	1	1	0	1	0	1	0	0	1	0
59	1	1	1	0	1	1	1	1	0	0	1
60	1	1	1	1	0	0	1	1	1	0	1
61	1	1	1	1	0	1	1	0	1	1	0
62	1	1	1	1	1	0	0	1	1	1	0
63	1	1	1	1	1	1	0	0	1	0	1

Note.— Les bits du sous-champ HSB sont positionnés selon un code de Hamming distance 3 plus un bit de parité, ce qui permet de détecter jusqu'à trois erreurs dans les 11 bits transmis.

4.3.8.4.2.3.2.8 *MID (adresse d'aéronef)*. Ce sous-champ de 24 bits (65-88) doit renfermer l'adresse à 24 bits de l'aéronef ACAS interrogateur.


Note.— Dans un message de résolution, la structure du champ MU est la suivante :

4.3.8.4.2.3.3 Sous-champ de MU dans une diffusion ACAS. Lorsque UDS1 = 3 et UDS2 = 2, le champ MU doit renfermer le sous-champ suivant :

4.3.8.4.2.3.3.1 *MID (adresse d'aéronef)*. Ce sous-champ de 24 bits (65-88) doit renfermer l'adresse à 24 bits de l'aéronef ACAS interrogateur.

Note.— Dans une diffusion ACAS, la structure du champ MU est la suivante :

4.3.8.4.2.3.4 Sous-champs de MU dans une diffusion d'avis de résolution (message d'interrogation de diffusion d'avis de résolution)

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Page 39 de 68

Date Janvier 2016

Note.— Le § 4.3.8.4.2.3.4.1 est applicable seulement aux systèmes conformes au TCAS version 7.1, et le § 4.3.8.4.2.3.4.2. seulement aux systèmes conformes à l'ACAS X.

- 4.3.8.4.2.3.4.1 Sous-champs de MU dans une diffusion d'avis de résolution. Lorsque UDS1 = 3 et UDS2 = 1, le champ MU doit renfermer les sous-champs suivants :
- 4.3.8.4.2.3.4.1.1 ARA (avis de résolution en vigueur). Ce sous-champ de 14 bits (41-54) doit être codé selon les indications du § 4.3.8.4.2.2.1.1.
- 4.3.8.4.2.3.4.1.2 RAC (enregistrement d'avis de résolution complémentaires). Ce sous-champ de 4 bits (55-58) doit être codé selon les indications du § 4.3.8.4.2.2.1.2.
- 4.3.8.4.2.3.4.1.3 *RAT (indicateur de fin d'avis de résolution)*. Ce sous-champ de 1 bit (59) doit être codé selon les indications du § 4.3.8.4.2.2.1.3.
- 4.3.8.4.2.3.4.1.4 MTE (rencontre de menace multiple). Ce sous-champ de 1 bit (60) doit être codé selon les indications du § 4.3.8.4.2.2.1.4.
- 4.3.8.4.2.3.4.1.5 *AID* (code d'identité mode A). Ce sous-champ de 13 bits (63-75) doit renfermer le code d'identité mode A de l'aéronef qui rend compte.

Codage

Bit 63 64 65 66 67 68 69 70 71 72 73 74 75 Bit de code mode A A4 A2 В4 B₂ В1 C₄ C₂ C₁ D4 D2 D₁ Α1

4.3.8.4.2.3.4.1.6 *CAC (code d'altitude mode C)*. Ce sous-champ de 13 bits (76-88) doit renfermer le code d'altitude mode C de l'aéronef qui rend compte.

Codage

Bit 78 79 80 81 82 83 84 85 86 87 88 Α1 Bit de code mode C C1 C_2 A2 D₁ B4 C₄ A4 0 В1 B2 D_2 D₄

Note.— Dans une diffusion d'avis de résolution, la structure du champ MU est la suivante :

33	37	41	55	59	60	61	63	76
UDS1 = 3	UDS2 = 1	ARA	RAC	RAT	MTE	-2-	AID	CAC
36	6 40	54	58	59	60	62	75	88

- 4.3.8.4.2.3.4.2 Systèmes conformes à l'ACAS X : Sous-champs de MU dans une diffusion d'avis de résolution (message d'interrogation de diffusion d'avis de résolution). Lorsque UDS1 = 3 et UDS2 = 1, le champ MU doit renfermer les sous-champs suivants :
- 4.3.8.4.2.3.4.2.1 ARA (avis de résolution en vigueur). Ce sous-champ de 10 bits (41-50) doit être codé selon les indications du § 4.3.8.4.2.2.2.1.
- 4.3.8.4.2.3.4.2.2 LDI (*inhibition de descente à basse altitude*). Ce sous-champ de 2 bits (51-52) doit être codé selon les indications du § 4.3.8.4.2.2.2.2.
- 4.3.8.4.2.3.4.2.3 RMF (format de message d'avis de résolution). Ce sous-champ de 2 bits (53-54) doit être codé selon les indications du §4.3.8.4.2.2.2.3.

4.3.8.4.2.3.4.2.4 RAC (enregistrement d'avis de résolution complémentaires). Ce sous-champ de 4

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition:

Date

Page 40 de 68

Janvier 2016

bits (55-58) doit être codé selon les indications du § 4.3.8.4.2.2.2.4.

- 4.3.8.4.2.3.4.2.5 RAT (*indicateur de fin d'avis de résolution*). Ce sous-champ de 1 bit (59) doit être codé selon les indications du § 4.3.8.4.2.2.2.5.
- 4.3.8.4.2.3.4.2.6 MTE (rencontre de menace multiple). Ce sous-champ de 1 bit (60) doit être codé selon les indications du § 4.3.8.4.2.2.2.6.
- 4.3.8.4.2.3.4.2.7 SPI (*indicateur de suppression*). Ce sous-champ de 1 bit (61) doit être codé selon les indications du § 4.3.8.4.2.2.2.11.
- 4.3.8.4.2.3.4.2.8 AID (*code d'identité mode A*). Ce sous-champ de 13 bits (63-75) doit renfermer le code d'identité mode A de l'aéronef qui rend compte.

Codage

Bit	63	64	65	66	67	68	69	70	71	72	73	74	75
Bit de code mode A	A4	A2	A1	B4	B2	B1	0	C4	C2	C1	D4	D2	D1

4.3.8.4.2.3.4.2.9 CAC (code d'altitude mode C). Ce sous-champ de 13 bits (76-88) doit renfermer le code d'altitude mode C de l'aéronef qui rend compte.

Codage

Bit	76	77	78	79	80	81 82 83	84	85	86	87	88
Bit de code mode C	C1	A1	C2	A2	C4	A4 0 B1	D1	B2	D2	B4	D4

Note.— Dans une diffusion d'avis de résolution, la structure de MU est la suivante :

	33	37	41	51	53	55	59	60	61	62	63	76	
Ī	UDS1 = 3	UDS2 = 1	ARA	LDI	RMF	RAC	RAT	MTE	SPI	-1-	AID	CAC	ı
_	36	40	50	52	54	58	59	60	61	62	75	88	

- 4.3.8.4.2.4 *Champ MV.* Ce champ de 56 bits (33-88) des réponses de surveillance air-air longue (Figure 4-1) sert à la transmission des messages de réponses de coordination air-air.
- 4.3.8.4.2.4.1 *VDS (sous-champ définition V).* Ce sous-champ de 8 bits (33-40) définit le reste de MV.
- Note.— Pour que le codage soit simple, VDS est exprimé sous la forme de deux groupes de 4 bits chacun : VDS1 et VDS2.
 - 4.3.8.4.2.4.2 Sous-champs de MV dans une réponse de coordination
- Note.— Le § 4.3.8.4.2.4.2.1 est applicable seulement aux systèmes conformes au TCAS version 7.1, et le § 4.3.8.4.2.4.2.2, seulement aux systèmes conformes à l'ACAS X.
- 4.3.8.4.2.4.2.1 Systèmes conformes au TCAS version 7.1 : Sous-champs de MV dans une réponse de coordination. Lorsque VDS1 = 3 et VDS2 = 0, MV doit renfermer les sous-champs suivants :
- 4.3.8.4.2.4.2.1.1 ARA (avis de résolution en vigueur). Ce sous-champ de 14 bits (41-54) doit être codé selon les indications du § 4.3.8.4.2.2.1.1.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition:

Date

Page 41 de 68

Janvier 2016

4.3.8.4.2.4.2.1.2 RAC (enregistrement d'avis de résolution complémentaires). Ce sous-champ de 4 bits (55-58) doit être codé selon les indications du § 4.3.8.4.2.2.1.2.

4.3.8.4.2.4.2.1.3 RAT (indicateur de fin d'avis de résolution). Ce sous-champ de 1 bit (59) doit être codé selon les indications du § 4.3.8.4.2.2.1.3.

4.3.8.4.2.4.2.1.4 *MTE* (rencontre de menace multiple). Ce sous-champ de 1 bit (60) doit être codé selon les indications du § 4.3.8.4.2.2.1.4.

Note.— Dans une réponse de coordination, la structure de MV est la suivante :

33	37	41	55	59	60	61
VDS1 = 3	VDS2 = 0	ARA	RAC	RAT	MTE	-28-
36	40	54	58	59	60	88

4.3.8.4.2.4.2.2 Systèmes conformes à l'ACAS X : Sous-champs de MV dans une réponse de coordination. Lorsque VDS1 = 3 et VDS2 = 0, le champ MV doit renfermer les sous-champs suivants :

4.3.8.4.2.4.2.2.1 ARA (avis de résolution en vigueur). Ce sous-champ de 10 bits (41-50) doit être codé selon les indications du § 4.3.8.4.2.2.2.1.

4.3.8.4.2.4.2.2.2 LDI (*inhibition de descente à basse altitude*). Ce sous-champ de 2 bits (51-52) doit être codé selon les indications du § 4.3.8.4.2.2.2.2.

4.3.8.4.2.4.2.2.3 RMF (format de message d'avis de résolution). Ce sous-champ de 2 bits (53-54) doit être codé selon les indications du § 4.3.8.4.2.2.2.3.

4.3.8.4.2.4.2.2.4 RAC (*enregistrement d'avis de résolution complémentaires*). Ce sous-champ de 4 bits (55-58) doit être codé selon les indications du § 4.3.8.4.2.2.2.4.

4.3.8.4.2.4.2.5 RAT (*indicateur de fin d'avis de résolution*). Ce sous-champ de 1 bit (59) doit être codé selon les indications du § 4.3.8.4.2.2.2.5.

4.3.8.4.2.4.2.2.6 MTE (*rencontre de menace multiple*). Ce sous-champ de 1 bit (60) doit être codé selon les indications du § 4.3.8.4.2.2.2.6.

Note.— Dans une réponse de coordination, la structure de MV est la suivante :

33	37	41	51	53	55	59	60	61
VDS1 = 3	VDS2 = 0	ARA	LDI	RMF	RAC	RAT	MTE	Non assigné
36	40	50	52	54	58	59	60	88

4.3.8.4.2.5 *SL* (compte rendu de niveau de sensibilité). Ce champ descendant de 3 bits (9-11) fait partie des deux formats de réponse : surveillance air-air courte (DF = 0) et surveillance air-air longue (DF = 16). Ce champ indique le niveau de sensibilité auquel l'ACAS fonctionne actuellement.

Codage

- 0 ACAS ne fonctionne pas
- 1 ACAS fonctionne au niveau de sensibilité 1
- 2 ACAS fonctionne au niveau de sensibilité 2
- 3 ACAS fonctionne au niveau de sensibilité 3
- 4 ACAS fonctionne au niveau de sensibilité 4
- 5 ACAS fonctionne au niveau de sensibilité 5
- 6 ACAS fonctionne au niveau de sensibilité 6

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition :

Date

Page 42 de 68

Janvier 2016

7 ACAS fonctionne au niveau de sensibilité 7

Note.— Systèmes conformes à l'ACAS X : l'ACAS ne transmettra pas un code de niveau de sensibilité supérieur à 3.

4.3.8.4.2.6 *CC* — *Capacité de liaison inter-ACAS*. Ce champ descendant de 1 bit (7) indique si le transpondeur est capable de prendre en charge la fonction liaison inter-ACAS, c'est-à-dire de décoder la teneur du champ DS dans une interrogation avec UF = 0 et de répondre avec la teneur du registre GICB spécifié dans la réponse correspondante avec DF = 16.

Codage

- 0 signifie que le transpondeur ne peut pas prendre en charge la fonction de liaison inter-ACAS
- 1 signifie que le transpondeur peut prendre en charge la fonction de liaison inter-ACAS
- 4.3.8.4.2.7 Systèmes conformes à l'ACAS X : Champ ME du squitter long pour la coordination airair. Ce champ de 56 bits (33-88) doit être utilisé pour la coordination airair avec des intrus équipés seulement de l'ADS-B (intrus qui ne peuvent pas recevoir de message de résolution 1 030 MHz discret).
- Note.— Des messages ADS-B avec code de TYPE = 28 (message de coordination opérationnelle ADS-B, voir le § 4.3.8.4.2.7.1) et code de TYPE = 31 (message d'état opérationnel de l'aéronef ADS-B, voir le § 4.3.8.4.2.7.2) sont utilisés dans la coordination air-air.
 - 4.3.8.4.2.7.1 Sous-champs de ME dans un message de coordination opérationnelle ADS-B (OCM)
- Note.— Dans les sous-champs définis ci-dessous, le numéro de bit indique la position par rapport au début du squitter long, dans lequel le bit 33 est le début du champ ME du message.
- 4.3.8.4.2.7.1.1 TYPE. Ce sous-champ de 5 bits (33-37), qui définit le type du squitter long, doit être positionné à 28 dans le cas du message de coordination opérationnelle ADS-B.
- 4.3.8.4.2.7.1.2 *Sous-type.* Ce sous-champ de 3 bits (38-40), qui définit plus avant le TYPE, doit être positionné à 3 dans le cas du message de coordination opérationnelle ADS-B.
- 4.3.8.4.2.7.1.3 MTB (bit de menace multiple). Ce sous-champ de 1 bit (42) doit indiquer une menace multiple conformément aux codes définis dans la section 4.3.8.4.2.3.
- 4.3.8.4.2.7.1.4 *CVC* (annulation d'avis de résolution complémentaire dans le plan vertical). Ce souschamp de 2 bits (43-44) doit être utilisé par l'équipement ACAS X en vol pour annuler un avis de résolution complémentaire dans le plan vertical envoyé à un aéronef menaçant équipé ACAS conformément aux codes définis dans la section 4.3.8.4.2.3.
- 4.3.8.4.2.7.1.5 *VRC* (avis de résolution complémentaire dans le plan vertical). Ce sous-champ de 2 bits (45-46) doit être utilisé par l'équipement ACAS X en vol pour envoyer un avis de résolution complémentaire dans le plan vertical (« ne passez pas par-dessus » ou « ne passez pas par-dessous ») à un aéronef menaçant équipé ACAS conformément aux codes définis dans la section 4.3.8.4.2.3.
- 4.3.8.4.2.7.1.6 CHC (annulation d'avis de résolution complémentaire dans le plan horizontal). Ce sous-champ de 3 bits (47-49) doit être utilisé par l'ACAS X avec moyen embarqué de résolution dans le plan horizontal pour annuler un avis de résolution complémentaire dans le plan horizontal envoyé à un aéronef menaçant équipé ACAS avec les codes définis dans la section 4.3.8.4.2.3. Le sous-champ CHC doit être positionné à 0 dans les messages de résolution TCAS transmis par l'ACAS X sans capacité de résolution dans le plan horizontal.
- 4.3.8.4.2.7.1.7 *HRC (avis de résolution complémentaire dans le plan horizontal)*. Ce sous-champ de 3 bits (50-52) doit être utilisé par l'ACAS X avec moyen embarqué de résolution dans le plan horizontal pour envoyer un avis de résolution complémentaire dans le plan horizontal pour manœuvrer (« ne virez pas à gauche » ou « ne virez pas à droite ») à un aéronef menaçant équipé ACAS avec les codes définis dans la section 4.3.8.4.2.3. Le sous-champ HRC doit être positionné à 0 dans les messages de coordination

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition:

Date

Page 43 de 68

Janvier 2016

opérationnelle ADS-B transmis par l'ACAS X sans capacité de résolution dans le plan horizontal.

4.3.8.4.2.7.1.8 *HSB* (sous-champ bits de sens horizontal). Ce sous-champ de 5 bits (53-57) doit être utilisé comme un champ de codage de parité pour protéger les six bits de sens horizontal (47-52). L'aéronef émetteur équipé d'un ACAS capable de transmettre sur 1 030/1 090 MHz et qui envoie un message de coordination doit ajouter les bits 53-57, avec les codes définis dans la section 4.3.8.4.2.3, à tous les messages de coordination opérationnelle ADS-B envoyés. L'aéronef ACAS X récepteur doit examiner le sous-champ HSB (53-57) des messages de coordination opérationnelle ADS-B. Si les six bits de sens vertical (47-52) ne s'accordent pas avec le sous-champ HSB (53-57), l'aéronef ACAS X récepteur doit conclure qu'il y a une erreur dans le message et ne doit pas en utiliser le contenu.

4.3.8.4.2.7.1.9 VSB (sous-champ bits de sens vertical). Ce sous-champ de 4 bits (58-61) doit être utilisé comme un champ de codage de parité pour protéger les quatre bits de sens vertical (43-46). L'ACAS actif émetteur doit ajouter le sous-champ VSB (58-61), avec les codes définis dans la section 4.3.8.4.2.3, à tous les messages de coordination opérationnelle envoyés. L'ACAS X récepteur doit examiner le sous-champ VSB (58-61) des messages de coordination opérationnelle reçus. Si quatre bits de sens vertical (43-46) ne sont pas en accord avec le sous-champ VSB (58-61), l'aéronef ACAS X récepteur doit conclure qu'il y a une erreur dans le message et ne doit pas en utiliser le contenu.

4.3.8.4.2.7.1.10 *TAA* (sous-champ identité de la menace — adresse d'aéronef). Ce sous-champ de 24 bits (65-88) doit renfermer l'adresse d'aéronef à 24 bits de la menace avec les codes définis dans la section 4.3.8.4.2.3.

Note.— Dans un message de coordination opérationnelle, la structure de ME est la suivante :

Position	Nombre de bits	Sous-champ	Remarques
33-37	5	TYPE	= 28
38-40	3	Sous-type	= 3
41	1	-	Non-assigné
42	1	МТВ	-
43-44	2	CVC	-
45-46	2	VRC	-
47-49	3	CHC	-
50-52	3	HRC	-
53-57	5	HSB	-
58-61	4	VSB	-
62-64	3	-	Non-assigné
65-88	24	TAA	-

4.3.8.4.2.7.2 Sous-champs de ME dans un message d'état opérationnel d'aéronef

Note.— Dans les sous-champs définis ci-dessous, le numéro de bit indique la position par rapport au début du squitter long, dans lequel le bit 33 est le début du champ ME du message.

4.3.8.4.2.7.2.1 TYPE. Ce sous-champ de 5 bits (33-37), qui définit le type de squitter long, doit être positionné à 31 pour le message d'état opérationnel de l'aéronef.

4.3.8.4.2.7.2.2 Sous-type. Ce sous-champ de 3 bits (38-40), qui définit plus avant le TYPE, doit être positionné à 0 dans le cas d'un aéronef en vol et à 1 dans le cas d'un aéronef à la surface. Aux fins de la coordination air-air ACAS X, le sous-type doit être toujours positionné à 0.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition:

Date

Page 44 de 68

Janvier 2016

4.3.8.4.2.7.2.3 CC (code de classe de l'équipement embarqué). Ce sous-champ de 16 bits (41-56), qui fait partie des messages de sous-type=0, doit être codé selon les indications des § 4.3.8.4.2.7.2.3.1 à 4.3.8.4.2.7.2.3.4.

- 4.3.8.4.2.7.2.3.1 Bit (41-42). Ce sous-champ de 2 bits (41-42) doit être positionné à 0 aux fins de la coordination air-air ACAS.
- 4.3.8.4.2.7.2.3.2 CA opérationnel (évitement des collisions opérationnel). Ce sous-champ de 1 bit (43) doit être positionné à 1 pour indiquer qu'un système d'évitement des collisions est disponible, opérationnel et capable d'émettre des avis de résolution. Lorsque ce bit est positionné à 1, les bits de capacité de coordination pour l'évitement des collisions doivent être examinés afin d'obtenir des renseignements de coordination détaillés.
- Note.— Dans le cas de toutes les versions du TCAS II et de tous les systèmes conformes à l'ACAS X, le transpondeur mode S associé positionne à 1 le bit du champ CA opérationnel lorsque RI = 3 ou 4.
- 4.3.8.4.2.7.2.3.3 Les bits (44-54) ne doivent pas être utilisés par le processus de coordination air-air de l'ACAS X mais sont réservés pour une utilisation future.
- 4.3.8.4.2.7.2.3.4 DAA (détecter et éviter). Ce sous-champ de 2 bits (55-56) doit être utilisé comme suit :
 - OD Pas de capacité DAA, ou le système DAA n'est pas capable de recevoir les renseignements de coordination aux fins de l'évitement des collisions
 - L'aéronef est équipé d'un système DAA capable de recevoir les messages de résolution TCAS et les messages de coordination opérationnelle ADS-B
 - 10 L'aéronef est équipé d'un système DAA capable de recevoir seulement les messages de coordination opérationnelle ADS-B
 - 11 Non défini
- Note 1.— Les bits du sous-champ DAA indiquent si des informations de coordination doivent être fournis à l'aéronef et quel doit être leur type pour que le système DAA de l'aéronef menaçant puisse écouter et transmettre des indications qui sont interopérables avec l'ACAS. Ces bits sont indépendants des bits de capacité de coordination pour l'évitement des collisions, étant donné qu'un aéronef doté d'un système DAA peut ou non être équipé d'un ACAS. Pour de plus amples renseignements sur les bits du sous-champ DAA, voir la spécification RTCA/DO-365.
- Note 2.— Le type de message de coordination transmis, le message de résolution ou le message de coordination opérationnelle ADS-B dépendent à la fois de la capacité de réception du système DAA et de la capacité de transmission de l'ACAS. Si le système DAA peut recevoir aussi bien le message de résolution et le message de coordination opérationnelle ADS-B, un ACAS avec capacité de transmission sur 1 030 MHz est nécessaire pour la transmission du message de résolution.
- 4.3.8.4.2.7.2.4 OM (mode opérationnel en vol). Ce sous-champ de 16 bits (57-72), qui fait partie des messages de sous-type=0, doit être codé selon les indications des § 4.3.8.4.2.7.2.4.1 à 4.3.8.4.2.7.2.4.3 Bits (57-58). Ce sous-champ de 2 bits (57-58) doit être positionné à 0 aux fins de la coordination air-air ACAS X.
- 4.3.8.4.2.7.2.4.2 Bits (59-64) et bit 72. Les bits (59-64) et le bit 72 ne doivent pas être utilisés par le processus de coordination air-air de l'ACAS X.
- 4.3.8.4.2.7.2.4.3 CCCB (bits de capacité de coordination pour l'évitement des collisions). Ce souschamp de 7 bits (65-71) doit être utilisé comme suit :

Vertical et horizontal [2 bits (65-66)]

00Vertical01Horizontal10Combiné

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Page 45 de 68 Edition : 1

Date Janvier 2016

11 Réservé

Type de système anticollision/Capacité [3 bits (67-69)]

000	ACAS actif (TCAS II)
001	ACAS actif (sauf tous TCAS II)
010	ACAS actif (sauf tous TCAS II)

avec capacité de transmission de messages OCM

011 ACAS Réactif

100 ACAS passif avec capacité de réception de messages de

résolution sur 1 030 MHz

101 ACAS passif avec capacité de réception de messages

OCM seulement

110 à 111 Réservés

Réservés [2 bits (70-71)]

00 à 11 Destinés aux systèmes d'aéronefs non habités

Note.— Les deux bits réservés « destinés aux systèmes d'aéronefs non habités » sont envisagés en tant que champ prioritaire pour faire la distinction entre les utilisateurs présentant des niveaux de capacité différents ou conformément aux directives des autorités de réglementation.

4.3.8.4.2.8 Numéro de pièce d'unité ACAS et numéro de pièce de logiciel ACAS. Si l'ACAS et le transpondeur associé ont la capacité nécessaire, l'ACAS doit transmettre son numéro de pièce d'unité au moyen du registre E516 du transpondeur, et son numéro de pièce de logiciel, au moyen du registre E616 du transpondeur.

Note.— Les formats de données des registres E516 et E616 du transpondeur sont spécifiés dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871).

4.3.9 Caractéristiques de l'équipement ACAS

4.3.9.1 Interfaces

Au minimum, les données d'entrée ci-après doivent être fournies à l'ACAS :

- a) code d'adresse d'aéronef;
- b) transmissions mode S air-air et air-sol reçues par le transpondeur et destinées à l'ACAS (§ 4.3.6.3.2);
- c) vitesse vraie maximale de croisière de l'aéronef de référence (Chapitre 3, § 3.1.2.8.2.2);
- d) altitude-pression;
- e) hauteur déterminée par radioaltimètre ;
- f) contrôle du mode de fonctionnement (attente, avis de trafic seulement et avis de trafic/avis de résolution) ;
- g) systèmes conformes à l'ACAS X : cap ;
- h) systèmes conformes à l'ACAS X : position GNSS et vitesse de l'aéronef de référence ;
- i) systèmes conformes à l'ACAS X : messages ADS-B de position en vol et à la surface, de vitesse de vol, d'état et de situation de la cible et d'état opérationnel d'aéronef des autres aéronefs pour utilisation par l'ACAS ;
- j) systèmes conformes à l'ACAS X avec modes spéciaux Xo : information de désignation concernant le mode de fonctionnement spécial.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition:

Date

Page 46 de 68

Janvier 2016

Note.— Les données d'entrée supplémentaires spécifiques à fournir à l'ACAS II et à l'ACAS III sont énumérées dans les paragraphes appropriés ci-dessous.

4.3.9.2 Système d'antennes de bord

L'ACAS doit émettre des interrogations et recevoir des réponses par l'intermédiaire de deux antennes disposées l'une sur la partie supérieure de l'aéronef et l'autre sur la partie inférieure. L'antenne disposée sur la partie supérieure doit être directive et capable de servir à des mesures de gisement.

- 4.3.9.2.1 *Polarisation.* La polarisation des émissions ACAS doit être nominalement verticale.
- 4.3.9.2.2 *Diagramme de rayonnement.* Le diagramme de rayonnement en site de chaque antenne disposée sur un aéronef doit être nominalement l'équivalent de celui d'une antenne unipolaire quart d'onde sur plan de sol.

4.3.9.2.3 SELECTION D'ANTENNE

- 4.3.9.2.3.1 *Réception des squitters.* L'ACAS doit être capable de recevoir des squitters par l'intermédiaire de ses antennes supérieure et inférieure.
- 4.3.9.2.3.2 *Interrogations*. Les interrogations ACAS ne doivent pas être émises simultanément depuis les deux antennes.

4.3.9.3 Source d'altitude-pression

L'altitude de l'aéronef de référence fournie à l'ACAS doit provenir de la source dont les données forment la base des comptes rendus mode C et mode S et ses incréments de quantification doivent être aussi petits que possible.

- 4.3.9.3.1 Les exploitants d'aéronef peuvent utiliser une source offrant une résolution supérieure à 7,62 m (25 ft).
- 4.3.9.3.2 Si on ne dispose pas d'une source offrant une résolution supérieure à 7,62 m (25 ft) et si les seules données d'altitude disponibles pour l'aéronef de référence sont codées en Gilham, on doit utiliser au moins deux sources indépendantes de données et comparer celles-ci en permanence pour y déceler les éventuelles erreurs de codage.
- 4.3.9.3.3 Les exploitants d'aéronef peuvent utiliser deux sources de données d'altitude et en comparer les données pour y déceler les éventuelles erreurs avant la transmission à l'ACAS.
- 4.3.9.3.4 Les dispositions du § 4.3.10.3 doivent être appliquées quand la comparaison des données d'altitude produites par les deux sources indique que l'une des sources est en erreur.

4.3.10 Contrôle

4.3.10.1 Fonction de contrôle

L'ACAS doit constamment accomplir une fonction de contrôle afin de donner l'alerte si au moins une des conditions ci-après se présente :

- a) il n'y a pas de limitation de la puissance d'interrogation en raison du contrôle du brouillage (§ 4.3.2.2.2) et la puissance rayonnée maximale est trop faible pour que les spécifications de performances de surveillance figurant au § 4.3.2 soient respectées;
- b) l'équipement subit une autre défaillance ayant pour effet de réduire la capacité d'émettre des avis de circulation ou de résolution ;
- c) des données d'origine externe indispensables à l'ACAS ne sont pas fournies, ou bien les données fournies ne sont pas vraisemblables.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition:

Date

Page 47 de 68

Janvier 2016

4.3.10.2 Effet sur le fonctionnement de l'ACAS

La fonction de contrôle ACAS ne doit pas nuire à l'accomplissement d'autres fonctions ACAS.

4.3.10.3 Réaction au résultat du contrôle

Lorsque la fonction de contrôle constate une défaillance (§ 4.3.10.1), l'ACAS doit réagir comme suit :

- a) il doit indiquer à l'équipage de conduite que la situation est anormale ;
- b) il doit empêcher toute autre interrogation par l'ACAS;
- c) il doit faire en sorte que toute émission mode S signalant les moyens de résolution de l'aéronef de référence indique que l'ACAS ne fonctionne pas.

4.3.11 Spécifications relatives à un transpondeur mode S utilisé avec l'ACAS

4.3.11.1 Possibilités du transpondeur

En plus des fonctions essentielles indiquées au Chapitre 3, § 3.1, le transpondeur mode S utilisé avec l'ACAS doit avoir les caractéristiques suivantes :

a) capacité de traiter les formats suivants :

Format nº	Nom du format
UF = 16	Interrogation de surveillance air-air longue
DF = 16	Réponse de surveillance air-air longue

- b) capacité de recevoir des interrogations mode S longues (UF = 16) et de générer des réponses conformément au § 3.1.2.10.3.7.3 ;
- c) moyen de remettre la teneur des données ACAS de toutes les interrogations adressées à l'équipement ACAS ;
- d) diversité d'antennes (comme indiqué au Chapitre 3, § 3.1.2.10.4);
- e) capacité de suppression mutuelle ;
- f) restriction de puissance de sortie de transpondeur à l'état inactif.

Lorsque l'émetteur du transpondeur mode S est à l'état inactif, la puissance de crête de l'impulsion à 1 090 MHz ± 3 MHz aux bornes de l'antenne du transpondeur mode S ne doit pas dépasser –70 dBm.

4.3.11.2 TRANSFERT DE DONNEES ENTRE L'ACAS ET SON TRANSPONDEUR MODE S

4.3.11.2.1 Transfert de données de l'ACAS à son transpondeur mode S :

- a) l'ACAS doit transférer des données d'avis de résolution à son transpondeur mode S pour qu'il les transmette dans un compte rendu d'avis de résolution (§ 4.3.8.4.2.2.1) et dans une réponse de coordination (§ 4.3.8.4.2.4.2) ;
- b) l'ACAS doit communiquer le niveau de sensibilité actuel à son transpondeur mode S pour qu'il les transmette dans un compte rendu de niveau de sensibilité (§ 4.3.8.4.2.5) ;
- c) l'ACAS doit transférer des informations sur les possibilités de liaison de données à son transpondeur mode S pour qu'il les transmette dans un compte rendu de possibilités de liaison de données (§ 4.3.8.4.2.2.2) et dans le champ RI des formats descendants air-air DF = 0 et DF = 16 (§ 4.3.8.4.1.2);
- d) l'ACAS doit fournir à son transpondeur mode S une indication que les avis de résolution sont validés ou invalidés pour qu'il la transmette dans le champ RI des formats descendants 0 et 16.

4.3.11.2.2 Transfert de données du transpondeur mode S à son ACAS :

a) systèmes conformes au TCAS version 7.1 : le transpondeur mode S doit transférer à son ACAS

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition :

Date

Page 48 de 68

Janvier 2016

une commande reçue de réglage du niveau de sensibilité (§ 4.3.8.4.2.1.1), provenant d'une station sol mode S ;

- b) le transpondeur mode S doit transférer à son ACAS une diffusion ACAS (§ 4.3.8.4.2.3.3) reçue d'un autre ACAS ;
- c) le transpondeur mode S doit transférer à son ACAS un message de résolution (§ 4.3.8.4.2.3.2) reçu d'un autre ACAS en vue de la coordination air-air ;
- d) le transpondeur mode S doit transférer à son ACAS les données d'identité mode A de l'aéronef de référence pour qu'il les transmette dans un avis de résolution diffusé (§ 4.3.8.4.2.3.4.5).

4.3.11.3 COMMUNICATION DE RENSEIGNEMENTS SUR L'ACAS A D'AUTRES ACAS

- 4.3.11.3.1 Réponse de surveillance. Le transpondeur mode S de l'ACAS doit utiliser le format de surveillance courte (DF = 0) ou longue (DF = 16) pour répondre aux interrogations de surveillance ACAS. La réponse de surveillance doit comprendre le champ VS spécifié au Chapitre 3, § 3.1.2.8.2, le champ RI spécifié au Chapitre 3, § 3.1.2.8.2, et au § 4.3.8.4.1.2 ainsi que le champ SL spécifié au § 4.3.8.4.2.5.
- 4.3.11.3.2 Réponse de coordination. Le transpondeur mode S de l'ACAS doit transmettre une réponse de coordination dès qu'il reçoit d'une menace équipée une interrogation de coordination sous réserve des conditions énumérées au § 4.3.11.3.2.1. La réponse de coordination doit être établie dans le format de réponse de surveillance air-air longue, DF = 16, avec le champ VS spécifié au Chapitre 3, § 3.1.2.8.2, le champ RI spécifié au Chapitre 3, § 3.1.2.8.2, et au § 4.3.8.4.1.2, le champ SL spécifié au § 4.3.8.4.2.4.
- 4.3.11.3.2.1 Le transpondeur mode S de l'ACAS doit transmettre une réponse de coordination quand il reçoit d'un autre ACAS une interrogation de coordination, mais uniquement s'il peut communiquer la teneur des données ACAS de l'interrogation à l'ACAS auguel il est relié.

4.3.11.4 COMMUNICATION DE RENSEIGNEMENTS SUR L'ACAS AUX STATIONS SOL

- 4.3.11.4.1 Compte rendu d'avis de résolution destinés aux stations sol mode S. Pendant la période de l'avis de résolution et pendant 18 ± 1 s après la fin de l'avis de résolution, le transpondeur mode S de l'ACAS doit indiquer qu'il a un compte rendu d'avis de résolution à envoyer en codant le champ DR dans les réponses à un capteur mode S de la manière spécifiée au § 4.3.8.4.1.1. Le compte rendu d'avis de résolution doit comprendre le champ MB spécifié au § 4.3.8.4.2.2.1 et indiquer le plus récent avis de résolution qui existait pendant la période de 18 ± 1 s précédente.
- Note 1.— La dernière phrase du § 4.3.11.4.1 signifie que pendant 18 ± 1 s après la fin d'un avis de résolution, tous les sous-champs de MB du compte rendu d'avis de résolution, à l'exception du bit 59 (indicateur de fin d'avis de résolution), conserveront les informations fournies au moment où l'avis de résolution était en vigueur pour la dernière fois.
- Note 2.— Dès qu'elle reçoit une réponse avec DR = 2, 3, 6 ou 7, une station sol mode S peut demander la transmission descendante du compte rendu d'avis de résolution en positionnant RR = 19 et soit $DI \neq 7$ ou DI = 7 et RRS = 0 dans une interrogation de surveillance ou Comm-A adressée à l'aéronef ACAS. Lorsqu'il reçoit cette interrogation, le transpondeur envoie une réponse Comm-B dont le champ MB contiendra le compte rendu d'avis de résolution.
- 4.3.11.4.2 Compte rendu de possibilités de liaison de données. La présence d'un ACAS doit être indiquée par son transpondeur mode S à une station sol à l'aide du compte rendu de possibilités de liaison de données mode S.

Note.— Le transpondeur fixe à cet effet les codes du compte rendu de possibilités de liaison de données de la manière spécifiée au § 4.3.8.4.2.2.2.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

v olullo i v

Systèmes de surveillance et anticollision

Chapitre 4 Edition:

Date

Page 49 de 68

Janvier 2016

4.3.12 Indications destinées à l'équipage de conduite

4.3.12.1 AVIS DE RESOLUTION CORRECTIF ET AVIS DE RESOLUTION PREVENTIF

Les indications destinées à l'équipage de conduite peuvent faire la distinction entre avis de résolution préventif et avis de résolution correctif.

4.3.12.2 AVIS DE RESOLUTION A FRANCHISSEMENT D'ALTITUDE

Si l'ACAS génère un avis de résolution à franchissement d'altitude, il peut être expressément indiqué à l'équipage de conduite qu'il s'agit d'un avis à franchissement d'altitude.

4.4 PERFORMANCE DE LA LOGIQUE ANTICOLLISION DE L'ACAS II

Note 1.— Il faudra faire preuve de prudence lorsqu'on envisagera d'apporter des améliorations l'ACAS , étant donné que celles-ci pourraient avoir une incidence sur plusieurs aspects de la performance des systèmes. Il est essentiel que les nouvelles conceptions n'entraînent pas de dégradation des performances de systèmes de conception différente et que la compatibilité des systèmes soit démontrée avec un degré élevé de confiance. La performance spécifiée à la section 4.4 est basée sur la performance réalisée par les systèmes conformes au TCAS version 7.1.

Note 2.— La performance des systèmes conformes à l'ACAS X est meilleure que celle des systèmes conformes au TCAS version 7.1. Pour de plus amples renseignements, voir le Manuel du système anticollision embarqué (ACAS) (Doc 9863).

4.4.1 Définitions relatives à la performance de la logique anticollision

Note.— La notation $[t_1, t_2]$ est utilisée pour indiquer l'intervalle entre t_1 et t_2 .

Aéronef en palier. Un aéronef qui n'est pas en transition.

Aéronef en transition. Aéronef dont le taux moyen de variation d'altitude est supérieur à 400 ft par minute (ft/min), valeur mesurée pendant une certaine période présentant un intérêt.

Angle de rapprochement. Différence entre les caps au sol de deux aéronefs au moment de leur rapprochement maximal, 180 degrés étant défini comme cap frontal et 0 degré comme cap parallèle.

Classe de rencontre. Les rencontres sont classées selon que les aéronefs sont ou non en transition au début et à la fin de la fenêtre de rencontre et selon que la rencontre comporte ou non un franchissement d'altitude.

Couche d'altitude. Chaque rencontre est attribuée à l'une des six couches d'altitude suivantes :

Couche	1	2	3	4	5	6
de		2 300 ft	5 000 ft	10 000 ft	20 000 ft	41 000 ft
à	2 300 ft	5 000 ft	10 000 ft	20 000 ft	41 000 ft	

La couche d'altitude d'une rencontre est déterminée par l'altitude moyenne des deux aéronefs au moment de leur rapprochement maximal.

Note.— Aux fins de la définition de la performance de la logique anticollision, il n'y a pas lieu de préciser l'origine matérielle de la mesure d'altitude, ni la relation entre l'altitude et le niveau du sol.

Distance horizontale d'évitement (hmd). Séparation horizontale minimale constatée dans une rencontre.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition:

Date

Page 50 de 68

Janvier 2016

Distance verticale d'évitement (vmd). Théoriquement, séparation verticale au point de rapprochement maximal. En fait de rencontres du modèle de rencontre type (§ 4.4.2.6), c'est par construction la séparation verticale au moment du point de rapprochement maximal.

Fenêtre de rencontre. L'intervalle de temps [tca – 40 s, tca + 10 s].

Rencontre. Aux fins de la définition de la performance de la logique anticollision, une rencontre consiste en deux trajectoires simulées d'aéronefs. Les coordonnées horizontales de l'aéronef représentent la position réelle de l'aéronef et la coordonnée verticale une mesure altimétrique de l'altitude.

Rencontre avec franchissement d'altitude. Rencontre dans laquelle la séparation en altitude des deux aéronefs est de plus de 100 ft au commencement et à la fin de la fenêtre de rencontre, la position verticale relative de deux aéronefs à la fin de la fenêtre de rencontre étant à l'inverse de celle du début de cette fenêtre.

Secteur de virage. Différence de cap définie comme la projection au sol du cap d'un aéronef à la fin d'un virage, moins son cap au sol au commencement du virage.

Taux de variation voulu. Pour le modèle de pilote type, le taux de variation d'altitude voulu est celui qui se rapproche le plus du taux originel compatible avec l'avis de résolution.

Taux originel de variation d'altitude. Le taux originel de variation d'altitude d'un aéronef ACAS en un moment quelconque est le taux de variation d'altitude dans le même temps quand il suivait la trajectoire originelle.

tca. Nominalement, moment du rapprochement maximal. Pour les rencontres dans le modèle de rencontre type (§ 4.4.2.6), moment de référence pour la détermination de la rencontre pour laquelle divers paramètres sont spécifiés, dont la séparation verticale et la séparation horizontale (vmd et hmd).

Note.— Dans le modèle de rencontre type (§ 4.4.2.6), une rencontre est matérialisée par les trajectoires des deux aéronefs s'éloignant du tca. À la fin du processus, le tca peut ne pas être le moment précis du rapprochement maximal, et des différences de quelques secondes sont acceptables.

Trajectoire originelle. La trajectoire originelle d'un aéronef ACAS est celle que suivait l'aéronef de la même rencontre quand il n'était pas équipé de l'ACAS.

4.4.2 Conditions d'application des exigences formulées

4.4.2.1 Conditions hypothétiques

Les conditions hypothétiques suivantes doivent s'appliquer aux exigences de performance spécifiées aux § 4.4.3 et 4.4.4 :

- a) à chaque cycle, l'intrus qui n'est pas à plus de 14 NM donne lieu à des mesures de distance et de gisement, ainsi qu'à un compte rendu d'altitude ;
- b) les erreurs de mesures de distance et de gisement respectent les modèles d'erreurs types de distance et de gisement (§ 4.4.2.2 et 4.4.2.3) ;
- c) les comptes rendus d'altitude de l'intrus, qui sont ses réponses en mode C, sont exprimés par incréments de 100 ft ;
- d) l'aéronef de référence donne lieu à une mesure d'altitude qui n'a pas été quantifiée par incréments et qui est exprimée avec une précision de 1 ft ou une valeur plus fine ;
- e) pour les deux aéronefs, les erreurs de mesure d'altitude sont constantes pendant toute la durée d'une rencontre donnée ;
- f) pour les deux aéronefs, les erreurs de mesure d'altitude respectent le modèle d'erreur altimétrique type (§ 4.4.2.4);
- g) les réactions des pilotes aux avis de résolution respectent le modèle de pilote type (§ 4.4.2.5);
- h) l'aéronef vole dans un espace aérien au sein duquel les rencontres rapprochées, dont celles pour lesquelles l'ACAS lance un avis de résolution, respectent le modèle de rencontre type (§ 4.4.2.6);

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition:

Date

Page 51 de 68

Janvier 2016

i) l'aptitude des aéronefs ACAS à effectuer les manœuvres exigées par leurs avis de résolution n'est pas limitée ;

- j) comme on le précise au § 4.4.2.7 :
 - 1) l'intrus en cause dans chaque rencontre n'est pas équipé [§ 4.4.2.7, alinéa a)] ; ou
 - 2) l'intrus est équipé de l'ACAS mais il suit une trajectoire identique à celle d'une rencontre non équipée [§ 4.4.2.7, alinéa b)] ; ou
 - 3) l'intrus est équipé d'un ACAS dont la logique anticollision est identique à celle de l'ACAS de référence [§ 4.4.2.7, alinéa c)].

Note.— L'expression « mesure d'altitude » renvoie à une mesure altimétrique préalable à toute quantification par incréments.

4.4.2.1.1 Lorsque chaque cycle ne donne pas lieu à des comptes rendus de surveillance, ou lorsque la quantification par incréments des mesures d'altitude de l'intrus est plurale, ou encore lorsque les mesures d'altitude de l'aéronef de référence sont quantifiées par incréments, la performance de la logique anticollision ne doit pas se dégrader brusquement du fait de la diversité de la distribution statistique des erreurs d'altitude ou des distributions statistiques des divers paramètres qui caractérisent le modèle de rencontre type, ou encore du fait de la réaction des pilotes aux avis.

4.4.2.2 MODELE D'ERREUR TYPE DE DISTANCE

Dans les mesures simulées de distance, les erreurs doivent être prises en compte à partir d'une distribution normale moyenne de 0 ft avec écart type de 50 ft.

4.4.2.3 MODELE D'ERREUR TYPE DE GISEMENT

Dans les mesures simulées de gisement, les erreurs doivent être prises en compte à partir d'une distribution normale moyenne de 0,0 degré avec écart type de 10,0 degrés.

4.4.2.4 MODELE D'ERREUR TYPE D'ALTIMETRIE

4.4.2.4.1 Dans les mesures d'altitude simulées, les erreurs doivent être supposées être distribuées selon une distribution normale (Laplace-Gauss) avec une moyenne nulle d'une densité de probabilité de :

$$p(e) = \frac{1}{2\lambda} \exp\left(-\frac{|e|}{\lambda}\right)$$

4.4.2.4.2 Le paramètre λ nécessaire à la définition de la distribution statistique de l'erreur altimétrique de chaque aéronef doit avoir l'une des deux valeurs, λ_1 et λ_2 , qui dépendent comme suit de la couche d'altitude de la rencontre :

Couche	1	,	2)	3	}	4	!	5	5	6	5
	m	ft	m	ft	m	ft	m	ft	m	ft	m	ft
λ_1	10	35	11	38	13	43	17	58	22	72	28	94
λ_2	18	60	18	60	21	69	26	87	30	101	30	101

4.4.2.4.3 Pour un aéronef ACAS, la valeur de λ doit être λ_1 .

4.4.2.4.4 Pour un aéronef non équipé de l'ACAS, la valeur de λ doit être choisie au hasard selon les probabilités suivantes :

|--|

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date

Page 52 de 68

Janvier 2016

$prob(\lambda_1)$	0,391	0,320	0,345	0,610	0,610	0,610
$prob(\lambda_2)$	0,609	0,680	0,655	0,390	0,390	0,390

4.4.2.5 MODELE DE PILOTE TYPE

Le modèle de pilote type utilisé dans l'évaluation de la performance de la logique anticollision doit être tel :

- a) qu'un avis de résolution est suivi d'effet quand, après un sursis approprié, il y a (au besoin) accélération au taux de variation d'altitude voulu ;
- b) que quand l'actuel taux de variation d'altitude de l'aéronef est le même que le taux de variation originel et que, celui-ci satisfaisant à l'avis de résolution, l'aéronef continue à son taux de variation originel, celui-ci n'étant pas nécessairement constant du fait de la possibilité d'accélération sur la trajectoire originelle;
- c) que quand l'aéronef satisfait à l'avis de résolution, son actuel taux de variation d'altitude est le même que le taux de variation originel, et le taux de variation originel se modifie et devient donc incompatible avec l'avis de résolution, l'aéronef continuant à satisfaire à celui-ci ;
- d) que quand un avis de résolution initial nécessite une modification du taux de variation d'altitude, l'aéronef réagit par une accélération de 0,25 g après un sursis de 5 s à partir de l'affichage de l'avis de résolution ;
- e) que quand un avis de résolution est modifié et que le taux de variation d'altitude originel satisfait à l'avis de résolution modifié, l'aéronef reprend (au besoin) son taux de variation originel avec l'accélération indiquée à l'alinéa g) après le sursis indiqué à l'alinéa h);
- f) que quand un avis de résolution est modifié et que le taux de variation d'altitude originel ne satisfait pas à l'avis de résolution modifié, l'aéronef réagit de façon à satisfaire à l'avis de résolution avec l'accélération indiquée à l'alinéa g) après le sursis indiqué à l'alinéa h);
- g) que l'accélération utilisée quand un avis de résolution est modifié est de 0,25 g, à moins que l'avis de résolution modifié soit un avis de résolution de sens inverse ou un avis de résolution à augmentation du taux de variation d'altitude, auquel cas l'accélération est de 0,35 g;
- h) que le délai utilisé quand un avis de résolution est modifié est de 2,5 s, à moins qu'il en résulte une accélération commençant moins de 5 s à partir de l'avis de résolution initial, auquel cas l'accélération débute 5 s à partir de l'avis de résolution initial;
- i) que quand un avis de résolution est annulé, l'aéronef reprend (au besoin) son taux de variation originel avec une accélération de 0,25 *g* après un sursis de 2,5 s.

4.4.2.6 MODELE DE RENCONTRE TYPE

4.4.2.6.1 ELEMENTS DU MODELE DE RENCONTRE TYPE

- 4.4.2.6.1.1 Pour calculer l'effet de l'ACAS sur le risque de collision (§ 4.4.3) et la compatibilité de l'ACAS avec la gestion du trafic aérien (ATM) (§ 4.4.4), des ensembles de rencontres sont créés pour chacun(e) des :
 - a) ordres envoyés aux deux aéronefs ;
 - b) six couches d'altitude;
 - c) dix-neuf classes de rencontre ;
 - d) neuf ou dix intervalles de vmd comme spécifié au § 4.4.2.6.2.4.

Les résultats de ces ensembles sont fusionnés par pondération relative, comme on l'indique au § 4.4.2.6.2.

4.4.2.6.1.1.1 Chaque ensemble de rencontres doit comprendre au moins 500 rencontres indépendantes suscitées aléatoirement.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition :

Date

Page 53 de 68

Janvier 2016

4.4.2.6.1.2 Dans chaque rencontre, les trajectoires des deux aéronefs doivent être construites de façon à présenter les caractéristiques suivantes, choisies aléatoirement :

- a) dans le plan vertical:
 - 1) une *vmd* issue de l'intervalle de *vmd* approprié ;
 - 2) un taux de variation d'altitude pour chaque aéronef au début de la fenêtre de rencontre, z₁ et à la fin de la fenêtre de rencontre, z₂ ;
 - 3) une accélération verticale;
 - 4) un instant de début d'accélération verticale ;
- b) et dans le plan horizontal :
 - 1) une *hmd*;
 - 2) un angle de rapprochement;
 - 3) pour chaque aéronef, une vitesse au point de rapprochement maximal;
 - 4) pour chaque aéronef, qu'il vire ou non, une décision ;
 - 5) le secteur de virage, l'angle d'inclinaison, l'instant de fin de virage ;
 - 6) pour chaque aéronef, qu'il modifie ou non sa vitesse, une décision ;
 - 7) l'importance de la modification de vitesse.

Note.— Il est possible que les choix des diverses caractéristiques de rencontre présentent des incompatibilités. Dans ce cas, le problème peut être résolu en renonçant soit au choix d'une caractéristique particulière soit à celui de la rencontre tout entière, selon ce qu'on jugera à propos.

4.4.2.6.1.3 Deux modèles doivent être utilisés pour la distribution statistique de la *hmd* (§ 4.4.2.6.4.1). Pour les calculs de l'effet de l'ACAS sur le risque de collision (§ 4.4.3), la *hmd* doit être inférieure à 500 ft. Pour les calculs de compatibilité de l'ACAS et de l'ATM (§ 4.4.4), la *hmd* doit être choisie dans une fourchette de valeurs plus large (§ 4.4.2.6.4.1.2).

Note.— On précise aux § 4.4.2.6.2 et 4.4.2.6.3 les caractéristiques verticales des trajectoires des aéronefs du modèle de rencontre type qui dépend de ce que la hmd est limitée à une petite valeur (« pour le calcul du rapport du risque ») ou peut prendre des valeurs plus importantes (« pour la compatibilité avec l'ATM »). Ceci étant, les caractéristiques des rencontres dans les plans vertical et horizontal sont indépendantes.

4.4.2.6.2 CLASSES DE RENCONTRE ET POIDS

4.4.2.6.2.1 Adresse d'aéronef. Chaque aéronef doit être également susceptible d'avoir la plus haute adresse d'aéronef.

4.4.2.6.2.2 Couches d'altitude. Les pondérations relatives et les couches d'altitude doivent être les suivantes :

Couche	1	2	3	4	5	6
Couche (prob)	0,13	0,25	0,32	0,22	0,07	0,01

4.4.2.6.2.3 Classes de rencontre

4.4.2.6.2.3.1 Les rencontres doivent être classées comme ci-après, selon que les aéronefs sont en palier (L) ou en transition (T) au commencement (avant le *tca*) et à la fin (après le *tca*) d'une fenêtre de rencontre et que cette rencontre comporte ou non un franchissement d'altitude :

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition :

Date

Page 54 de 68

Janvier 2016

	Aéron	ef n° 1	Aéron	ef n° 2	
Classe	avant le tca	<i>après le</i> tca	avant le tca	après le tca	Franchissement
1	L	L	Т	T	oui
2	L	L	L	T	oui
3	L	L	T	L	oui
4	T	T	T	T	oui
5	L	T	T	T	oui
6	T	T	T	L	oui
7	L	T	L	T	oui
8	L	T	T	L	oui
9	T	L	T	L	oui
10	L	L	L	L	non
11	L	L	T	T	non
12	L	L	L	T	non
13	L	L	T	L	non
14	T	T	T	T	non
15	L	T	T	T	non
16	T	T	T	L	non
17	L	T	L	T	non
18	L	T	T	L	non
19	T	L	T	L	non

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition :

Date

Page 55 de 68

Janvier 2016

4.4.2.6.2.3.2 Les pondérations relatives des classes de rencontre dépendent de la couche, comme ci-après :

	Pour le calcul du	rapport de risque	Pour la con	npatibilité ATM
Classe	Couches 1-3	Couches 4-6	Couches 1-3	Couches 4-6
1	0,00502	0,00319	0,06789	0,07802
2	0,00030	0,00018	0,00408	0,00440
3	0,00049	0,00009	0,00664	0,00220
4	0,00355	0,00270	0,04798	0,06593
5	0,00059	0,00022	0,00791	0,00549
6	0,00074	0,00018	0,00995	0,00440
7	0,00002	0,00003	0,00026	0,00082
8	0,00006	0,00003	0,00077	0,00082
9	0,00006	0,00003	0,00077	0,00082
10	0,36846	0,10693	0,31801	0,09011
11	0,26939	0,41990	0,23252	0,35386
12	0,06476	0,02217	0,05590	0,01868
13	0,07127	0,22038	0,06151	0,18571
14	0,13219	0,08476	0,11409	0,07143
15	0,02750	0,02869	0,02374	0,02418
16	0,03578	0,06781	0,03088	0,05714
17	0,00296	0,00098	0,00255	0,00082
18	0,00503	0,00522	0,00434	0,00440
19	0,01183	0,03651	0,01021	0,03077

4.4.2.6.2.4 Intervalle de vmd

4.4.2.6.2.4.1 La *vmd* de chaque rencontre doit être prise dans un des 10 intervalles de *vmd* pour les classes de rencontre sans franchissement d'altitude et dans un des 9 ou 10 intervalles de *vmd* pour les classes de rencontre avec franchissement d'altitude. Chaque intervalle de *vmd* doit être de 100 ft pour le calcul du rapport de risque ou de 200 ft pour le calcul de compatibilité avec l'ATM. La *vmd* maximale doit être de 1 000 ft pour le calcul du rapport de risque et de 2 000 ft autrement.

4.4.2.6.2.4.2 Pour les classes de rencontre sans franchissement d'altitude, les hauteurs relatives des intervalles de *vmd* doivent être les suivantes :

<i>Intervalle de</i> vmd	Pour le calcul du rapport de	Pour la compatibilité	
-	risque	ATM	
1	0,013	0,128	
2	0,026	0,135	
3	0,035	0,209	
4	0,065	0,171	
5	0,100	0,160	
6	0,161	0,092	
7	0,113	0,043	
8	0,091	0,025	
9	0,104	0,014	
10	0,091	0,009	

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition :

Date

Page 56 de 68

Janvier 2016

Note.— La somme des pondérations des intervalles de vmd n'atteint pas 1,0. Les pondérations spécifiées sont basées sur une analyse des rencontres constatées d'après les données des radars au sol de l'ATC. La proportion manquante tient au fait que certaines des rencontres constatées ont une vmd supérieure à la vmd maximale du modèle.

4.4.2.6.2.4.3 Pour les classes de franchissement, les pondérations relatives des intervalles de *vmd* doivent être les suivantes :

<i>Intervalle de</i> vmd	Pour le calcul du rapport de risque	Pour la compatibilité ATM
1	0,0	0,064
2	0,026	0,144
3	0,036	0,224
4	0,066	0,183
5	0,102	0,171
6	0,164	0,098
7	0,115	0,046
8	0,093	0,027
9	0,106	0,015
10	0,093	0,010

Note.— En ce qui concerne les classes de franchissement d'altitude, la vmd doit être supérieure à 100 ft pour que la rencontre soit considérée comme une rencontre avec un tel franchissement. Ainsi, pour le calcul du rapport de risque, il n'y a pas d'intervalle de vmd 1 et pour les calculs de compatibilité avec l'intervalle de vmd, ATM 1 est limité à [100 ft, 200 ft].

- 4.4.2.6.3 CARACTERISTIQUES DES TRAJECTOIRES D'AERONEFS DANS LE PLAN VERTICAL
- 4.4.2.6.3.1 *vmd*. La *vmd* de chaque rencontre doit être choisie de façon aléatoire d'après une distribution qui est uniforme dans l'intervalle correspondant à l'intervalle de la *vmd* appropriée.
 - 4.4.2.6.3.2 Taux de variation d'altitude
- 4.4.2.6.3.2.1 Pour chaque aéronef de chaque rencontre, le taux de variation d'altitude doit être constant (\dot{z}), à moins que la trajectoire verticale ne soit construite de façon qu'au tca-35 s ce taux soit \dot{z}_1 et qu'au tca+5 s il soit \dot{z}_2 . Chaque taux de variation d'altitude, \dot{z} , \dot{z}_1 ou \dot{z}_2 doit être d'abord déterminé par le choix aléatoire d'un intervalle qui le comprenne, puis par celui de la valeur précise que comporte une distribution uniforme dans l'intervalle choisi.
- $4.4.2.6.3.2.2 \hspace{0.2cm} \text{Les intervalles dans lesquels sont compris les taux de variation d'altitude dépendent de ce que l'aéronef est en palier, c'est-à-dire marqué « L » au § 4.4.2.6.2.3.1, ou en transition, c'est-à-dire marqué « T » au § 4.4.2.6.2.3.1 ; ils se présentent comme suit :$

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date Page 57 de 68

Janvier 2016

Τ
[3 200 ft/min, 6 000 ft/min]
[400 ft/min, 3 200 ft/min]
[-400 ft/min, 400 ft/min]
[-3 200 ft/min, -400 ft/min]
[-6 000 ft/min, -3 200 ft/min]

4.4.2.6.3.2.3 Dans le cas des aéronefs en palier pendant toute la fenêtre de rencontre, le taux de variation d'altitude \dot{z} doit être constant. Les probabilités des intervalles comprenant z sont les suivantes :

ż (ft/min)	prob(ż)
[240 ft/min, 400 ft/min]	0,0382
[80 ft/min, 240 ft/min]	0,0989
[-80 ft/min, 80 ft/min]	0,7040
[-240 ft/min, -80 ft/min]	0,1198
[-400 ft/min, -240 ft/min]	0,0391

4.4.2.6.3.2.4 Dans le cas des aéronefs qui ne sont pas en palier pendant toute la fenêtre de rencontre, on détermine les intervalles de \dot{z}_1 et \dot{z}_2 ensemble, par sélection aléatoire au moyen des probabilités conjointes qui dépendent de la couche d'altitude et du fait que l'aéronef est ou non en transition au commencement de la fenêtre de rencontre (de la variation d'altitude au palier) à la fin de la fenêtre de rencontre (du palier à la variation d'altitude) ou à la fois au commencement et à la fin (de la variation d'altitude à la variation d'altitude). Les probabilités conjointes des intervalles des taux de variation d'altitude sont les suivantes :

pour les aéronefs dont les trajectoires passent d'une variation d'altitude au palier dans les couches 1 à 3,

Intervalle ż2

Probabilité conjointe des intervalles ż₁ et ż₂

[240 ft/min, 400 ft/min]	0,0019	0,0169	0,0131	0,1554	0,0000
[80 ft/min, 240 ft/min]	0,0000	0,0187	0,0019	0,1086	0,0000
[-80 ft/min, 80 ft/min]	0,0037	0,1684	0,0094	0,1124	0,0075
[-240 ft/min, -80 ft/min]	0,0037	0,1461	0,0094	0,0243	0,0037
[–400 ft/min, –240 ft/min]	0,0000	0,1742	0,0094	0,0094	0,0019

 $-6\ 000\ \text{ft/min}$ $-3\ 200\ \text{ft/min}$ $-400\ \text{ft/min}$ $400\ \text{ft/min}$ $3\ 200\ \text{ft/min}$ $6\ 000\ \text{ft/min}$ \dot{z}_1

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition:

Date

Page 58 de 68

0,0105

0,0279

0,0139

0,0105

0,0000

Janvier 2016

pour les aéronefs dont les trajectoires passent d'une variation d'altitude au palier dans les couches 4 à 6,

Intervalle ż₂

[240 ft/min, 400 ft/min] [80 ft/min, 240 ft/min] [-80 ft/min, 80 ft/min] [-240 ft/min, -80 ft/min]

[-400 ft/min, -240 ft/min]

 0,0105
 0,0035
 0,0000
 0,1010

 0,0035
 0,0418
 0,0035
 0,1776

 0,0279
 0,1219
 0,0000
 0,2403

Probabilité conjointe des intervalles ż₁ et ż₂

0,0000

0,0035

-6 000 ft/min

-3 200 ft/min

0,0035

0,0105

-400 ft/min

0,0767

0,0453

400 ft/min 3 200 ft/min 6 000 ft/min

0,0488

0,0174

Ż1

pour les aéronefs dont les trajectoires passent du palier à un taux de variation d'altitude dans les couches 1 à 3,

Intervalle żo

Probabilité conjointe des intervalles ż, et ż2

[3200 ft/r	min, 6000	ft/min]
[400 ft/m	in, 3200 f	t/min]
[-400 ft/r	min, 400 f	t/min]
[-3200 ft	/min, –40	0 ft/min]
[-6000	ft/min,	-3200
ft/min]		

0,0000	0,0000	0,0000	0,0000	0,0000
0,0074	0,0273	0,0645	0,0720	0,1538
0,0000	0,0000	0,0000	0,0000	0,0000
0,2978	0,2084	0,1365	0,0273	0,0050
0,0000	0,0000	0,0000	0,0000	0,0000

-400 ft/min

-240 ft/min

-80 ft/min

80 ft/min

240 ft/min

400 ft/min

pour les aéronefs dont les trajectoires passent du palier à un taux de variation d'altitude dans les couches 4 à 6,

Intervalle ż₂

Probabilité conjointe des intervalles ż₁ et ż₂

[3200 ft/i	min, 6000	ft/min]
[400 ft/m	in, 3200 f	t/min]
[-400 ft/ı	min, 400 f	t/min]
[-3200 ft	/min, –40	0 ft/min]
[-6000	ft/min,	-3200
ft/min]		

			•	
0,0000	0,0000	0,0000	0,0000	0,0192
0,0000	0,0000	0,0962	0,0577	0,1154
0,0000	0,0000	0,0000	0,0000	0,0000
0,1346	0,2692	0,2308	0,0577	0,0192
0,0000	0,0000	0,0000	0,0000	0,0000

-400 ft/min

-240 ft/min

-80 ft/min

80 ft/min

240 ft/min

400 ft/min **ż**₁

pour les aéronefs dont les trajectoires passent d'un taux de variation d'altitude à un taux de variation d'altitude dans les couches 1 à 3.

Intervalle ż₂

Probabilité conjointe des intervalles ż₁ et ż₂

[3200 ft/min, 6000 ft/min] [400 ft/min, 3200 ft/min] [-400 ft/min, 400 ft/min] [-3200 ft/min, -400 ft/min] [-6000 ft/min, -3200 ft/min]

0,0000	0,0000	0,0007	0,0095	0,0018
0,0000	0,0018	0,0249	0,2882	0,0066
0,0000	0,0000	0,0000	0,0000	0,0000
0,0048	0,5970	0,0600	0,0029	0,0011
0,0000	0,0007	0,0000	0,0000	0,0000

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition:

Page 59 de 68

Date Janvier 2016

-6~000~ft/min -3~200~ft/min -400~ft/min 400~ft/min 3~200~ft/min 6~000~ft/min \dot{z}_1 pour les aéronefs dont les trajectoires passent d'un taux de variation d'altitude à un taux de variation d'altitude dans les couches 4 à 6,

Intervalle ż₂

Probabilité conjointe des intervalles $\dot{\mathbf{z}}_1$ et $\dot{\mathbf{z}}_2$

[3200 ft/min, 6000 ft/min]
[400 ft/min, 3200 ft/min]
[-400 ft/min, 400 ft/min]
[-3200 ft/min, -400 ft/min]
[-6000 ft/min, -3200 ft/min]

0,0014	0,0000	0,0028	0,0110	0,0069
0,0028	0,0028	0,0179	0,4889	0,0523
0,0000	0,0000	0,0000	0,0000	0,0000
0,0317	0,3029	0,0262	0,0152	0,0028
0,0110	0,0220	0,0014	0,0000	0,0000

-6 000 ft/min

-3 200 ft/min

–400 ft/min

400 ft/min

3 200 ft/min 6 000 ft/min

.

4.4.2.6.3.2.5 Dans le cas d'une route avec passage d'un taux de variation d'altitude à un taux de variation d'altitude, si $|\dot{z}_2 - \dot{z}_1|$ < 566 ft/min, cette route doit être construite avec un taux de variation d'altitude constant égal à \dot{z}_1

4.4.2.6.3.3 Accélération verticale

4.4.2.6.3.3.1 Sous réserve du § 4.4.2.6.3.2.5, dans le cas d'un aéronef qui n'est pas en palier pendant toute la fenêtre de rencontre, le taux de variation d'altitude doit être constant et égal à \dot{z}_1 au moins dans l'intervalle [tca – 40 s, tca –35 s] au commencement de la fenêtre de rencontre, puis il doit être constant et égal à \dot{z}_2 au moins dans l'intervalle [tca + 5 s, tca + 10 s] à la fin de la fenêtre de rencontre. L'accélération verticale doit être constante pendant la période écoulée.

4.4.2.6.3.3.2 L'accélération verticale () est modélisée ainsi :

$$\ddot{z} = A(\dot{z}_1 - \dot{z}_2) + \in$$

où le paramètre A dépend du cas comme suit :

	A(s ⁻¹)		
Cas	Couches 1-3	Couches 4-6	
Taux de variation d'altitude à palier	0,071	0,059	
Palier à taux de variation d'altitude	0,089	0,075	
Taux de variation d'altitude à taux de variation d'altitude	0,083	0,072	

et l'erreur ε est choisie aléatoirement en utilisant la densité de probabilité suivante :

$$p(\epsilon) = \frac{1}{2\mu} \exp\left(-\frac{|\epsilon|}{\mu}\right)$$

où $\mu = 0.3 \text{ ft s} - 2.$

Note.— Le signe de l'accélération $\overset{.}{z}$ est déterminé par \dot{z}_1 et \dot{z}_2 . Une erreur ε qui inverse ce signe doit être rejetée et l'erreur être choisie de nouveau.

4.4.2.6.3.4 *Instant du début d'accélération*. Distribué uniformément dans l'intervalle de temps [tca − 35 s, tca − 5 s], l'instant du début d'accélération doit être tel que ż₂ ne soit pas postérieur à tca + 5 s.

4.4.2.6.4 CARACTERISTIQUES DES TRAJECTOIRES D'AERONEFS DANS LE PLAN HORIZONTAL

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date Page 60 de 68

Janvier 2016

4.4.2.6.4.1 Distance horizontale d'évitement

4.4.2.6.4.1.1 Pour les calculs de l'effet de l'ACAS sur le risque de collision (§ 4.4.3), la *hmd* doit être uniformément distribuée dans la fourchette [0, 500 ft].

4.4.2.6.4.1.2 Pour les calculs concernant la compatibilité de l'ACAS avec l'ATM (§ 4.4.4), la *hmd* doit être distribuée de façon que ses valeurs présentent les probabilités totales suivantes :

Couches 1-3	Couches 4-6	hmd (ft)	Couches 1-3	Couches 4-6
0,000	0,000	17 013	0,999	0,868
0,152	0,125	18 228	1,000	0,897
0,306	0,195	19 443		0,916
0,482	0,260	20 659		0,927
0,631	0,322	21 874		0,939
0,754	0,398	23 089		0,946
0,859	0,469	24 304		0,952
0,919	0,558	25 520		0,965
0,954	0,624	26 735		0,983
0,972	0,692	27 950		0,993
0,982	0,753	29 165		0,996
0,993	0,801	30 381		0,999
0,998	0,821	31 596		1,000
0,999	0,848			
	0,000 0,152 0,306 0,482 0,631 0,754 0,859 0,919 0,954 0,972 0,982 0,993 0,998	0,000 0,000 0,152 0,125 0,306 0,195 0,482 0,260 0,631 0,322 0,754 0,398 0,859 0,469 0,919 0,558 0,954 0,624 0,972 0,692 0,982 0,753 0,993 0,801 0,998 0,821	0,000 0,000 17 013 0,152 0,125 18 228 0,306 0,195 19 443 0,482 0,260 20 659 0,631 0,322 21 874 0,754 0,398 23 089 0,859 0,469 24 304 0,919 0,558 25 520 0,954 0,624 26 735 0,972 0,692 27 950 0,982 0,753 29 165 0,993 0,801 30 381 0,998 0,821 31 596	0,000 0,000 17 013 0,999 0,152 0,125 18 228 1,000 0,306 0,195 19 443 0,482 0,260 20 659 0,631 0,322 21 874 0,754 0,398 23 089 0,859 0,469 24 304 0,919 0,558 25 520 0,954 0,624 26 735 0,972 0,692 27 950 0,982 0,753 29 165 0,993 0,801 30 381 0,998 0,821 31 596

4.4.2.6.4.2 *Angle de rapprochement.* La distribution totale de l'angle de rapprochement dans le plan horizontal doit être comme suit :

Angle de	•		Angle de	Probabilité totale	
rapprochement (deg.)	Couches 1-3	Couches 4-6	rapprochement (deg.)	Couches 1-3	Couches 4-6
0	0,00	0,00	100	0,38	0,28
10	0,14	0,05	110	0,43	0,31
20	0,17	0,06	120	0,49	0,35
30	0,18	0,08	130	0,55	0,43
40	0,19	0,08	140	0,62	0,50
50	0,21	0,10	150	0,71	0,59
60	0,23	0,13	160	0,79	0,66
70	0,25	0,14	170	0,88	0,79
80	0,28	0,19	180	1,00	1,00
90	0,32	0,22			

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition : Date Page 61 de 68

Janvier 2016

4.4.2.6.4.3 *Vitesse des aéronefs.* Au rapprochement maximal, la distribution totale de chaque vitesse-sol dans le plan horizontal doit être la suivante :

(kt)	Couches 1-3	Couches 4-6	(kt)	Couches 1-3	Couches 4-6
45	0,000		325	0,977	0,528
50	0,005		350	0,988	0,602
75	0,024	0,000	375	0,997	0,692
100	0,139	0,005	400	0,998	0,813
125	0,314	0,034	425	0,999	0,883
150	0,486	0,064	450	1,000	0,940
175	0,616	0,116	475		0,972
200	0,700	0,171	500		0,987
225	0,758	0,211	525		0,993
250	0,821	0,294	550		0,998
275	0,895	0,361	575		0,999
300	0,949	0,427	600		1,000

4.4.2.6.4.4 *Probabilités de manœuvre dans le plan horizontal.* Pour chaque aéronef de chaque rencontre, la probabilité de virage, la probabilité d'une modification de vitesse en virage et la probabilité d'une modification de vitesse sans virage doivent être les suivantes :

Couche	Prob. (virage)	Prob. (modification de vitesse) en virage	Prob. (modification de vitesse) sans virage
1	0,31	0,20	0,50
2	0,29	0,20	0,25
3	0,22	0,10	0,15
4, 5, 6	0,16	0,05	0,10

4.4.2.6.4.4.1 En cas de modification de vitesse, la probabilité d'une augmentation de vitesse doit être de 0,5 et la probabilité d'une diminution de vitesse doit être de 0,5.

4.4.2.6.4.5 Secteur de virage. Pour tout secteur de virage, la distribution totale doit être la suivante

(deg.)	Couches 1-3	Couches 4-6
15	0,00	0,00
30	0,43	0,58
60	0,75	0,90
90	0,88	0,97
120	0,95	0,99
150	0,98	1,00
180	0,99	
210	1 00	

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition :

Date

Page 62 de 68

Janvier 2016

0,5 et la probabilité d'un virage à droite de 0,5 également.

4.4.2.6.4.6 *Angle d'inclinaison.* L'angle d'inclinaison d'un aéronef en virage ne doit pas être inférieur à 15 degrés. La probabilité qu'il soit égal à 15 degrés doit être de 0,79 dans les couches 1-3 et de 0,54 dans les couches 4-5. La distribution totale des angles d'inclinaison plus grands doit être la suivante :

Angle d'inclinaison	Probabilité totale		
(deg.)	Couches 1-3	Couches 4-6	
15	0,79	0,54	
25	0,96	0,82	
35	0,99	0,98	
50	1,00	1,00	

4.4.2.6.4.7 *Durée de fin de virage.* La distribution totale de la durée de fin de virage de chaque aéronef doit être la suivante :

_ /					
Durée	de	tın	de	virage	

Proba	abilité	totale
-------	---------	--------

(secondes avant le tca)	Couches 1-3	Couches 4-6
0	0,42	0,28
5	0,64	0,65
10	0,77	0,76
15	0,86	0,85
20	0,92	0,94
25	0,98	0,99
30	1,00	1,00

4.4.2.6.4.8 *Modification de vitesse.* Une accélération ou une décélération constante doit être choisie aléatoirement pour chaque aéronef procédant à une modification de vitesse pendant une rencontre donnée et elle doit être appliquée pendant la durée de la rencontre. Les accélérations doivent être uniformément réparties entre 2 kt/s et 6 kt/s. Les décélérations doivent être uniformément réparties entre 1 kt/s et 3 kt/s.

4.4.2.7 EQUIPEMENT ACAS DE L'INTRUS

Les spécifications de performance énoncées au § 4.4.3 et 4.4.4 concernent chacune trois situations distinctes dans lesquelles les conditions suivantes doivent s'appliquer à l'ACAS et à la trajectoire de l'intrus :

- a) quand l'intrus dont il s'agit dans chaque rencontre n'est pas équipé [§ 4.4.2.1, alinéa j) 1)], il suit une trajectoire identique à celle qu'il suit quand un aéronef de référence n'est pas équipé ;
- b) quand l'intrus est équipé de l'ACAS mais suit une trajectoire identique à celle d'une rencontre non équipée [§ 4.4.2.1, alinéa j) 2)] :
 - 1) il suit la trajectoire identique, qu'il y ait ou non un avis de résolution ;
 - 2) l'ACAS de l'intrus lance un avis de résolution et transmet un avis de résolution complémentaire (RAC) qui est reçu immédiatement après tout avis de résolution d'abord annoncé au pilote de l'aéronef de référence ;
 - 3) le sens de l'avis de résolution complémentaire produit par l'ACAS de l'intrus et

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition:

Date

Page 63 de 68

Janvier 2016

transmis à l'aéronef de référence est opposé au sens du premier avis de résolution complémentaire sélectionné et transmis à l'intrus par l'aéronef de référence (§ 4.3.6.1.3)

- 4) l'avis de résolution complémentaire transmis par l'intrus est reçu par l'aéronef de référence :
- 5) ces spécifications s'appliquent à la fois quand l'aéronef de référence a l'adresse d'aéronef inférieure et quand l'aéronef intrus a l'adresse d'aéronef inférieure ;
- c) quand l'intrus est équipé d'un ACAS dont la logique anticollision est identique à celle de l'ACAS de référence [§ 4.4.2.1, alinéa j) 3)] :
 - 1) les conditions relatives à la performance de l'aéronef, à l'ACAS et au pilote de référence s'appliquent également à l'aéronef, à l'ACAS et au pilote intrus ;
 - 2) les avis de résolution complémentaires transmis par un aéronef sont reçus par l'autre ;
 - 3) ces spécifications s'appliquent à la fois quand l'aéronef de référence a l'adresse d'aéronef inférieure et quand l'aéronef intrus a l'adresse d'aéronef inférieure.

4.4.2.8 COMPATIBILITE DES DIFFERENTS TYPES DE LOGIQUES ANTICOLLISION [Réservé]

4.4.3 Réduction du risque de collision

D'après les conditions du § 4.4.2, la logique anticollision doit être telle que le nombre prévu de collisions est réduit aux proportions suivantes du nombre prévu en l'absence d'ACAS :

- a) quand l'intrus n'est pas équipé d'ACAS: 0,18;
- b) quand l'intrus est équipé mais ne réagit pas : 0,32 ;
- c) quand l'intrus est équipé et réagit : 0,04.

4.4.4 Compatibilité avec la gestion du trafic aérien (ATM)

4.4.4.1 CADENCE D'ALERTES NUISIBLES

- 4.4.4.1.1 D'après les conditions énoncées au § 4.4.2, la logique anticollision doit être telle que la proportion d'avis de résolution constituant une « nuisance » (§ 4.4.4.1.2) ne dépasse pas :
 - 0,06 quand la vitesse verticale de l'aéronef de référence au moment où l'avis de résolution est diffusé pour la première fois est inférieure à 400 ft/min ; ou
 - 0,08 quand la vitesse verticale de l'aéronef au moment où l'avis de résolution est diffusé pour la première fois dépasse 400 ft/min.
- Note.— Cette obligation n'est pas atténuée si l'intrus est équipé de l'ACAS (§ 4.4.2.7) car celui-ci a un effet négligeable sur l'occurrence et la fréquence des avis de résolution constituant une nuisance.
- 4.4.4.1.2 Aux fins du § 4.4.4.1.1, un avis de résolution doit être considéré comme une « nuisance » si, en un certain point d'une rencontre sans ACAS, la séparation horizontale et la séparation verticale sont simultanément inférieures aux valeurs suivantes :

	Séparation horizontale	Séparation verticale
Au-dessus de FL100	2,0 NM	750 ft
Au-dessous de FL100	1,2 NM	750 ft

4.4.4.2 SELECTION DE SENS COMPATIBLES

Dans les conditions énoncées au § 4.4.2, la logique anticollision doit être telle que la proportion de rencontres à l'occasion desquelles le fait de se conformer à l'avis de résolution donne lieu à une séparation en altitude correspondant au rapprochement maximal, avec le signe opposé à celui qui

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition :

Date

Page 64 de 68

Janvier 2016

caractérise l'absence d'ACAS, ne dépasse pas les valeurs suivantes :

a) quand l'intrus n'est pas équipé d'ACAS 0,08 ;

b) quand l'intrus est équipé mais ne réagit pas 0,08;

c) quand l'intrus est équipé et réagit 0,12.

4.4.4.3 ECARTS CAUSES PAR L'ACAS

4.4.4.3.1 Dans les conditions énoncées au § 4.4.2, la logique anticollision doit être telle que le nombre d'avis de résolution donnant lieu à des « écarts » (§ 4.4.4.3.2) supérieurs aux valeurs indiquées ne doit pas dépasser les proportions suivantes du nombre total d'avis de résolution :

	Quand la vitesse verticale de l'aéronef de référence au moment où l'avis de résolution est diffusé pour la première fois	
	est inférieure à 400 ft/min	dépasse 400 ft/min
Quand l'intrus n'est pas équipé		
d'ACAS, pour les écarts ≥ 300 ft	0,15	0,23
pour les écarts ≥ 600 ft	0,04	0,13
pour les écarts ≥ 1 000 ft	0,01	0,07
Quand l'intrus est équipé mais ne réagit		
pas,	0,23	0,35
pour les écarts ≥ 300 ft	0,06	0,16
pour les écarts ≥ 600 ft	0,02	0,07
pour les écarts ≥ 1 000 ft		
Quand l'intrus est équipé et réagit,	0,11	0,23
pour les écarts ≥ 300 ft	0,02	0,12
pour les écarts ≥ 600 ft	0,01	0,06
pour les écarts ≥ 1 000 ft	, i	•

4.4.4.3.2 Aux fins du § 4.4.4.3.1, l'« écart » des aéronefs équipés, par rapport à la trajectoire originelle, est mesuré dans l'intervalle entre le moment où l'avis de résolution est lancé pour la première fois et celui où, après annulation de l'avis de résolution, l'aéronef équipé a repris son taux de variation d'altitude originel. L'écart est calculé comme étant la plus grande différence d'altitude survenant à un moment quelconque dans cet intervalle entre la trajectoire suivie par l'aéronef équipé quand il répond à son avis de résolution et sa trajectoire originelle.

4.4.5 Valeur relative des objectifs en conflit [Réservé]

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition :

Date

Page 65 de 68

Janvier 2016

4.5 UTILISATION DU SQUITTER LONG PAR L'ACAS

4.5.1 Surveillance hybride ACAS à l'aide de données de position sur squitter long

Note.— Les protocoles de surveillance définis dans la présente section sont destinés à la surveillance hybride ACAS, et les protocoles de surveillance destinés aux ACAS qui ne sont pas équipés pour la surveillance hybride sont définis à la section 4.3.7.1.

4.5.1.1 DEFINITIONS

- **Surveillance active.** Technique qui consiste à poursuivre un intrus à l'aide des renseignements obtenus dans les messages qu'il envoie en réponse aux interrogations de l'ACAS de référence.
- **Surveillance hybride.** Technique qui consiste à utiliser une combinaison de surveillance active et de surveillance passive avec données validées pour actualiser une piste ACAS afin de préserver l'indépendance de l'ACAS.
- **Surveillance hybride élargie**. Technique qui consiste à utiliser des messages ADS-B de position en vol transmis sur squitter long 1 090 MHz, sans validation des données de piste sur squitter long 1 090 par des interrogations actives de l'ACAS.
- Surveillance passive. Technique qui consiste à poursuivre un autre aéronef sans l'interroger, à l'aide des squitters longs que cet aéronef émet. L'ACAS utilise les renseignements obtenus sur squitter long 1 090 MHz seulement pour déterminer s'il doit exercer une surveillance active, non à d'autres fins. La surveillance passive s'applique à la fois à la surveillance hybride et à la surveillance hybride élargie.
- **Validation.** Vérification de la position relative d'un intrus à l'aide de renseignements passifs sur squitter long 1 090 MHz, par comparaison avec la position relative obtenue à la suite d'une interrogation active de l'ACAS.
- 4.5.1.2 Les ACAS équipés pour recevoir des messages de position en vol sur squitter long destinés à servir à la surveillance passive des intrus non menaçants doivent utiliser les informations de position passives comme il est indiqué ci-après.

4.5.1.3 SURVEILLANCE PASSIVE

4.5.1.3.1 SURVEILLANCE HYBRIDE ÉLARGIE

- 4.5.1.3.1.1 Les systèmes qui utilisent le mode de surveillance hybride élargie doivent établir la piste sans effectuer d'interrogations, c'est-à-dire qu'ils doivent faire l'acquisition de la piste en utilisant exclusivement le squitter long ADS-B, lorsque les conditions suivantes sont respectées :
 - Les données sur la position de l'aéronef de référence respectent le niveau minimal de qualité suivant :
 - a) l'incertitude (95 %) de la position horizontale de l'aéronef de référence est < 0,1 NM ;
 - b)l'intégrité de la position horizontale de l'aéronef de référence sera telle que la probabilité d'une erreur de position non décelée, de plus de 0,6 NM de rayon, est inférieure à 1 x 10⁻⁷.
 - 2) L'intensité du signal reçu est égale ou inférieure à −68 dBm ±2 dB (niveau minimal de déclenchement de la surveillance hybride élargie), ou l'aéronef de référence est au sol ;
 - 3) La qualité des données de l'intrus respectent les conditions minimales suivantes :
 - a) le numéro de version ADS-B est ≥ 2 ;
 - b) la NIC indiquée est ≥ 6 (< 0,6 NM);
 - c) la NACp indiquée est ≥ 7 (< 0,1 NM);
 - d) le SIL indiqué est = 3;

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition:

Date

Page 66 de 68

Janvier 2016

e) la SDA indiquée = 2 ou 3;

- f) l'altitude barométrique est valide.
- 4.5.1.3.1.2 Le système ne doit pas utiliser les données ADS-B en mode rediffusion (ADS-R) ni les données TIS-B pour acquérir passivement un aéronef.
- Note 1.— L'ADS-R est décrite dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871).
- Note 2.— Le niveau d'intensité du signal ne peut pas être appliqué aux données ADS-R ni aux données TIS-B.
- 4.5.1.3.1.3 Une piste tenue à jour selon le mode de surveillance hybride élargie doit devenir une piste tenue à jour selon le mode de surveillance active si la distance et l'altitude prévues dans les critères de menace hybride sont atteintes.
- Note.— Le document RTCA DO-300A Change 1/EUROCAE ED-221A Minimum Operational Performance Standards (MOPS) for Traffic Alert and Collision Avoidance System II (TCAS II) Hybrid Surveillance contient des renseignements sur les critères de distance et d'altitude représentant une menace hybride.
- 4.5.1.3.1.4 Une piste en mode surveillance hybride élargie doit passer au mode surveillance hybride si
 - 1) le signal indique une forte probabilité de proximité immédiate, c'est-à-dire signal > au MTL de surveillance hybride élargie, sauf lorsque l'aéronef est à la surface ; ou
 - la qualité des données de l'intrus ou de l'aéronef de référence ne satisfont pas aux spécifications minimales.
- 4.5.1.3.2 Validation. Pour valider la position d'un intrus communiquée par squitter long et ne répondant pas aux critères du mode de surveillance hybride élargie, l'ACAS doit déterminer la distance relative et le gisement de cet aéronef en se fondant sur la position calculée et le cap géographique de l'aéronef de référence et sur la position de l'intrus communiquée dans le squitter long. La distance et le gisement obtenus ainsi que l'altitude indiquée dans le squitter doivent être comparés à la distance, au gisement et à l'altitude déterminés au moyen d'une interrogation active par l'ACAS exigeant une réponse courte de l'aéronef. Les différences entre les distances et les gisements calculés et mesurés ainsi qu'entre l'altitude indiquée dans le squitter et l'altitude qui figure dans la réponse doivent être calculées et utilisées dans des tests visant à déterminer la validité des données du squitter long. Si les tests sont réussis, la position passive doit être considérée comme étant validée et la piste doit être tenue à jour à l'aide de données passives à moins qu'il ne s'agisse d'une menace proche comme il est décrit au § 4.5.1.4. Si l'un quelconque de ces tests de validation échoue, l'intrus doit être poursuivi par surveillance active.
- Note.— Des tests appropriés permettant de valider les données de squitter long aux fins de la surveillance hybride ACAS figurent dans le document RTCA DO-300A Change 1/EUROCAE ED-221A Minimum Operational Performance Standards (MOPS) for Traffic Alert and Collision Avoidance System II (TCAS II) Hybrid Surveillance.
- 4.5.1.3.3 Interrogations actives supplémentaires. Pour faire en sorte que la piste d'un intrus soit mise à jour au moins aussi souvent qu'il le faut en l'absence de données sur squitter long (§ 4.3.7.1.2.2), chaque fois qu'une piste est mise à jour à l'aide d'informations sur squitter, le moment auquel une interrogation active s'impose par la suite doit être calculé. S'il n'est pas reçu d'autre squitter avant que cette interrogation ne devienne nécessaire, celle-ci doit être effectuée au moment calculé.

4.5.1.4 Menace proche

Un intrus doit être poursuivi par surveillance active s'il constitue une menace proche d'après les résultats de tests distincts de distance et d'altitude. Ces tests doivent être tels qu'un intrus est considéré comme une menace proche avant qu'il ne devienne une menace possible, ce qui doit déclencher

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition :

Date

Page 67 de 68

Janvier 2016

l'émission d'un avis de circulation comme il est décrit au § 4.3.3. Ils doivent être effectués une fois par seconde. Toutes les menaces proches, menaces possibles et menaces doivent être poursuivies par surveillance active.

Note.— Des tests appropriés permettant de déterminer qu'un intrus constitue une menace proche figurent dans le document RTCA DO-300A Change 1/EUROCAE ED-221A – Minimum Operational Performance Standards (MOPS) for Traffic Alert and Collision Avoidance System II (TCAS II) Hybrid Surveillance.

4.5.1.5 Revalidation et contrôle.

Si un aéronef est poursuivi par surveillance passive et les critères du mode de surveillance hybride élargie ne sont pas respectés, des interrogations actives périodiques doivent être utilisées pour valider et contrôler les données de squitter long, comme le prescrit le § 4.5.1.3.2. Les cadences de revalidation doivent se situer entre une fois par minute et une fois toutes les dix secondes. Les tests prescrits au § 4.5.1.3.2 doivent être effectués pour chaque interrogation, et en cas d'échec de ces tests de revalidation, l'intrus doit être poursuivi par surveillance active.

Note.— Le document RTCA DO-300A Change 1/EUROCAE ED-221A – Minimum Operational Performance Standards (MOPS) for Traffic Alert and Collision Avoidance System II (TCAS II) Hybrid Surveillance contient de plus amples renseignements sur les critères de cadence de revalidation.

4.5.1.6 Surveillance active intégrale.

Si les conditions suivantes sont réunies, dans le cas d'une piste tenue à jour à l'aide de données de surveillance passive :

- a) $|a| \le 10\,000$ ft, et à la fois :
- b) $|a| \le 3\,000 \text{ ft ou } |a-3\,000 \text{ ft}| / |\dot{a}| \le 60 \text{ s}$; et
- c) $r \le 3 \text{ NM ou } (r 3 \text{ NM}) / |\dot{r}| \le 60 \text{ s};$
- où a = séparation en altitude par rapport à l'intrus, en ft,
 - \dot{a} = estimation du taux de variation d'altitude, en ft/s,
 - r = distance oblique de l'intrus, en NM,
 - \dot{r} = estimation du taux de variation de la distance, en NM/s,

l'aéronef doit être déclaré en poursuite active, et la piste doit être mise à jour à l'aide de mesures actives de distance une fois par seconde aussi longtemps que les conditions ci-dessus sont réunies.

- 4.5.1.6.1 Toutes les menaces proches, menaces possibles et menaces doivent être poursuivies par surveillance active.
- 4.5.1.6.2 Une protection suffisante contre les données de position ADS-B résiduelles doit être assurée dans le calcul de l'état de la piste lors de la transition de la surveillance passive à la surveillance active, afin d'éviter l'émission d'avis non nécessaires durant la transition.
- 4.5.1.6.3 Une piste sous surveillance active doit faire l'objet d'une surveillance passive si elle ne correspond ni à une menace proche ou possible ni à une menace. Les tests servant à déterminer qu'un aéronef n'est plus une menace proche doivent être similaires aux tests en question au § 4.5.1.4, mais ils doivent utiliser des seuils élargis, afin d'avoir une hystérésis qui évite la possibilité de transitions fréquentes entre la surveillance active et la surveillance passive.

Note.— Des tests appropriés permettant de déterminer qu'un intrus ne constitue plus une menace proche figurent dans le document RTCA DO-300A Change 1/EUROCAE ED-221A – Minimum Operational

Amendement 3 03/11/2022

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 4 Edition :

Date

Page 2 de 68

Janvier 2016

Performance Standards (MOPS) for Traffic Alert and Collision Avoidance System II (TCAS II) Hybrid Surveillance.

4.5.2 Utilisation de l'ACAS avec un niveau minimal de déclenchement (MTL) de récepteur amélioré [Réservé]

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV
Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date

Page 1 de 14

Janvier 2016

CHAPITRE 5. SQUITTER LONG MODE S

- Note 1.— Les systèmes à squitter long mode S qui prennent en charge les services ADS-B seront conformes au modèle fonctionnel illustré à la Figure 5-1.
- Note 2.— Les systèmes embarqués émettent des messages ADS-B (ADS-B émission) et peuvent recevoir des messages ADS-B (ADS-B réception).
- Note 3.— Bien qu'ils ne soient pas expressément représentés dans le modèle fonctionnel illustré à la Figure 5-1, les systèmes à squitter long équipant des véhicules de surface d'aérodrome ou des obstacles fixes émettront des messages ADS-B (ADS-B émission).

Figure 5-1. Modèle fonctionnel de système ADS-B

5.1 CARACTERISTIQUES DU SYSTEME D'EMISSION DE SQUITTERS LONGS MODE S

Note.— Les Chapitres 2 et 3 contiennent un grand nombre des dispositions relatives à l'émission de squitters longs mode S par les transpondeurs mode S et les dispositifs qui ne sont pas des transpondeurs mode S qui utilisent les formats de message définis dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) de l'OACI. Les dispositions présentées dans les paragraphes cidessous concernent des spécifications applicables à des classes précises de systèmes d'émission embarqués et au sol qui prennent en charge les applications ADS-B.

5.1.1 ADS-B émission

5.1.1.1 Les aéronefs, les véhicules de surface et les obstacles fixes qui sont dotés d'une capacité ADS-B doivent assurer la fonction de génération de messages ADS-B et la fonction d'échange de messages

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date

Page 2 de 14

Janvier 2016

ADS-B (émission) représentées à la Figure 5-1.

- 5.1.1.1.1 Les émissions ADS-B des aéronefs doivent comprendre la position, l'identification et le type de l'aéronef, la vitesse de vol, l'état périodique et les messages déclenchés par un événement y compris l'information urgence/prioritaire.
- 5.1.1.1.2 Autant que possible, l'équipement d'émission des squitters longs pourra utiliser les formats et les protocoles de la version la plus récente disponible.
- Note 1.— Les formats et les protocoles de données pour les messages transférés via squitter long sont spécifiés dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871).
- Note 2.— Certains États et/ou régions exigent que la version 2 des squitters longs soit utilisée à compter de certaines dates.
- 5.1.1.2 Spécifications relatives aux émissions ADS-B sur squitter long. L'équipement d'émission de squitters longs mode S doit être classé en fonction de sa portée et de l'ensemble de paramètres qu'il est capable d'émettre, compte tenu des classes générales d'équipement définies ci-après et des classes spécifiques d'équipement décrites dans les Tableaux 5-1 et 5-2 :
 - a) les systèmes embarqués à squitter long de classe A prennent en charge une capacité interactive comprenant une fonction d'émission de squitters longs (à savoir ADS-B émission) et une fonction complémentaire de réception de squitters longs (à savoir ADS-B réception) à l'appui d'applications ADS-B embarquées;
 - b) les systèmes à squitter long de classe B offrent une capacité en émission seulement (à savoir ADS-B émission, sans possibilité de réception de squitters longs) et peuvent être utilisés dans des aéronefs, des véhicules de surface ou sur des obstacles fixes ;
 - c) les systèmes à squitter long de classe C fonctionnent en réception seulement ; ils ne sont donc pas visés par des spécifications concernant l'émission.
- 5.1.1.3 Spécifications relatives aux systèmes à squitter long de classe A. Les systèmes embarqués à squitter long de classe A doivent avoir les caractéristiques de sous-système d'émission et de réception de la même classe (à savoir A0, A1, A2 ou A3), comme il est spécifié aux § 5.1.1.1 et 5.2.1.2.
- Note.— Les sous-systèmes d'émission et de réception de classe A appartenant à la même classe spécifique (p. ex. classe A2) sont conçus pour se compléter les uns les autres du point de vue de leurs capacités fonctionnelles et de leurs performances. Les portées air-air minimales dont les systèmes d'émission et de réception de squitters longs d'une même classe sont censés être capables sont les suivantes :
 - a) portée air-air nominale de A0 à A0 : 10 NM ;
 - b) portée air-air nominale de A1 à A1 : 20 NM ;
 - c) portée air-air nominale de A2 à A2 : 40 NM ;
 - d) portée air-air nominale de A3 à A3 : 90 NM.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date

Page 3 de 14

ı

Janvier 2016

Les portées ci-dessus sont des objectifs de conception. La portée air-air effective réelle de systèmes à squitter long de classe A peut être supérieure dans certains cas (p. ex. en environnement à faible niveau de fruit sur 1 090 MHz) et inférieure dans d'autres (p. ex. en environnement à très haut niveau de fruit sur 1 090 MHz).

- 5.1.1.4 Contrôle de l'ADS-B émission.
- 5.1.1.4.1 La protection contre la réception de données altérées provenant de la source qui fournit la position peut être assurée par la détection d'erreurs dans les données entrées et par la maintenance appropriée de l'installation.
- 5.1.1.4.2 Si un contrôle indépendant de la fonction ADS-B émission est fourni, l'état opérationnel de la fonction ADS-B émission doit être communiqué en permanence à l'équipage de conduite.

Note.— Le contrôle indépendant de la fonction ADS-B émission n'est pas requis.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date

Page 4 de 14 1 Janvier 2016

Tableau 5-1. Caractéristiques de l'équipement ADS-B de classe A

Classe d'équipement	Puissance d'émission minimale (à la borne de l'antenne)	Puissance d'émission maximale (à la borne de l'antenne)	En vol ou à la surface	Messages sur squitter long à prendre en charge (minimum) (voir Note 2)
A0 (minimum)	18,5 dBW (voir Note 1)	27 dBW	En vol	Position en vol Identification et classe de l'aéronef Vitesse de vol État opérationnel de l'aéronef État de l'aéronef sur squitter long
			Surface	Position à la surface Identification et classe de l'aéronef État opérationnel de l'aéronef État de l'aéronef sur squitter long
A1 (de base)	21 dBW	27 dBW	En vol	Position en vol Identification et classe de l'aéronef Vitesse de vol État opérationnel de l'aéronef État de l'aéronef sur squitter long
			Surface	Position à la surface Identification et classe de l'aéronef État opérationnel de l'aéronef État de l'aéronef sur squitter long
A2 (amélioré)	21 dBW	27 dBW	En vol	Position en vol Identification et classe de l'aéronef Vitesse de vol État opérationnel de l'aéronef État de l'aéronef sur squitter long Réservé – État et situation de la cible
			Surface	Position à la surface Identification et classe de l'aéronef État opérationnel de l'aéronef État de l'aéronef sur squitter long
A3 (étendu)	23 dBW	27 dBW	En vol	Position en vol Identification et classe de l'aéronef Vitesse de vol État opérationnel de l'aéronef État de l'aéronef sur squitter long Réservé – État et situation de la cible
			Surface	Position à la surface Identification et classe de l'aéronef État opérationnel de l'aéronef État de l'aéronef sur squitter long

Note 1.— Voir au Chapitre 3, § 3.1.2.10.2, les restrictions applicables à l'utilisation de cette catégorie de transpondeur mode S.

Note 2.— Les messages sur squitter long de l'équipement de classe A sont définis dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871).

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date

Page 5 de 14 1 Janvier 2016

Tableau 5-2. Caractéristiques de l'équipement ADS-B de classe B

Classe d'équipement	Puissance d'émission minimale (à la borne de l'antenne)	Puissance d'émission maximale (à la borne de l'antenne)	En vol ou à la surface	Messages sur squitter long à prendre en charge (minimum)
B0 (embarqué)	18,5 dBW (voir Note 1)	27 dBW	En vol	Position en vol Identification et classe de l'aéronef Vitesse de vol État opérationnel de l'aéronef État de l'aéronef sur squitter long
			Surface	Position à la surface Identification et classe de l'aéronef État opérationnel de l'aéronef État de l'aéronef sur squitter long
B1 (embarqué)	21 dBW	27 dBW	En vol	Position en vol Identification et classe de l'aéronef Vitesse de vol État opérationnel de l'aéronef État de l'aéronef sur squitter long
			Surface	Position à la surface Identification et classe de l'aéronef État opérationnel de l'aéronef État de l'aéronef sur squitter long
B2 inférieur (véhicule terrestre)	8,5 dBW	< 18,5 dBW (voir Note 2)	Surface	Position à la surface Identification et classe de l'aéronef État opérationnel de l'aéronef
B2 (véhicule terrestre)	18,5 dBW	27 dBW (voir Note 2)	Surface	Position à la surface Identification et classe de l'aéronef État opérationnel de l'aéronef
B3 (obstacle fixe)	18,5 dBW	27 dBW (voir Note 2)	En vol (voir Note 3)	Position en vol Identification et classe de l'aéronef État opérationnel de l'aéronef

Note 1.— Voir au Chapitre 3, § 3.1.2.10.2, les restrictions applicables à l'utilisation de cette catégorie de transpondeur mode S.

Note 2.— L'autorité ATS compétente devrait obtenir la puissance maximale permise.

Note 3.— Les obstacles fixes utilisent les formats de message de l'équipement ADS-B embarqué car la connaissance de leur position est d'intérêt primordial pour les aéronefs en vol.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date

Page 6 de 14

Janvier 2016

5.1.2 TIS-B émission [Non applicable]

5.1.3 ADS-B émission pour les véhicules de surface

- 5.1.3.1 Tous les véhicules de surface dotés d'une capacité ADS-B sur squitter long, quelle qu'en soit la version, doivent émettre des messages sur squitter long conformément au § 5.1.1.2.
- 5.1.3.2 Performances de système requises pour la version 2 du squitter long. La source de position et l'équipement installé dans les véhicules de surface pour émettre les messages sur squitter long, version 2, doivent être conformes aux caractéristiques suivantes :
- 5.1.3.2.1 La NAC_P des données de navigation sur la position doit être supérieure ou égale à 9, soit une précision de 95 % appliquée à la position horizontale inférieure à 30 mètres.
 - Note.— La NAC_P est calculée sur la base des performances des satellites.
- 5.1.3.2.2 La NAC_V des données de navigation sur la vitesse doit être supérieure ou égale à 2, soit une erreur de vitesse inférieure à 3 mètres/seconde.
- 5.1.3.2.3 Les valeurs minimales de la NAC_P et de la NAC_V doivent être respectées avec une disponibilité minimale de 95 %.
- 5.1.3.2.4 Le paramètre de la confiance pouvant être accordée à la conception du système doit être égal ou supérieur à 1, ce qui établit la probabilité d'une défaillance entraînant l'émission d'information fausse ou erronée à une valeur inférieure ou égale à 1×10^{-3} .
- Note 1.— Ces spécifications de performances minimales pour les données de position émises sur squitter long version 2 depuis les véhicules de surface sont nécessaires pour soutenir les applications d'alerte embarquées.
- Note 2.— Les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) contiennent des éléments indicatifs sur les systèmes ADS-B des véhicules de surface.

5.2 CARACTERISTIQUES DES SYSTEMES DE RECEPTION DE SQUITTERS LONGS MODE S (ADS-B RECEPTION)

- Note 1.— Les paragraphes qui suivent portent sur les capacités requises des récepteurs 1 090 MHz utilisés pour recevoir des émissions sur squitter long mode S contenant des messages ADS-B. Les systèmes embarqués de réception prennent en charge la réception de messages ADS-B alors que les systèmes sol de réception ne prennent en charge que la réception de messages ADS-B.
- Note 2.— Les dispositions techniques détaillées relatives aux récepteurs de squitters longs mode S figurent dans le document DO-260B, de la RTCA et ED-102A de l'EUROCAE, Minimum Operational Performance Standards for 1 090 MHz Extended Squitter Automatic Dependent Surveillance—Broadcast (ADS-B) and Traffic Information Services—Broadcast (TIS-B).

5.2.1 Spécifications fonctionnelles des systèmes de réception de squitters longs mode S

5.2.1.1 Les systèmes de réception de squitters longs mode S doivent assurer la fonction d'échange de messages (réception) et la fonction d'assembleur de compte rendu.

Note.— Les systèmes de réception de squitters longs reçoivent des messages ADS-B sur squitter long mode S et produisent des comptes rendus ADS-B destinés à des applications clients. Ce modèle fonctionnel (illustré à

Amendement 2 08/11/2018

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date

Page 7 de 14

Janvier 2016

la Figure 5-1) représente à la fois des systèmes embarqués et des systèmes sol de réception ADS-B sur 1 090 MHz.

5.2.1.2 Classes de récepteurs de squitters longs mode S. La fonctionnalité et les caractéristiques de performance requises des systèmes de réception de squitters longs mode S varient selon les applications clients ADS-B à prendre en charge et l'emploi opérationnel du système. Les récepteurs de squitters longs mode S embarqués doivent être conformes aux classes de système de réception définies dans le Tableau 5-3.

Tableau 5-3. Performances de réception des systèmes embarqués de réception

Classe de récepteur	Portée air-air opérationnelle prévue	Niveau minimal de déclenchement (MTL) du récepteur (voir Note 1)	Technique de réception (voir Note 2)	Messages ADS-B sur squitter long à prendre en charge
A0 (VFR de base)	10 NM	–72 dBm	Standard	Position en vol Position à la surface Vitesse de vol Identification et classe de l'aéronef État de l'aéronef sur squitter long État opérationnel de l'aéronef
A1 (IFR de base)	20 NM	–79 dBm	Améliorée	Position en vol Position à la surface Vitesse de vol Identification et classe de l'aéronef État de l'aéronef sur squitter long État opérationnel de l'aéronef
A2 (IFR amélioré)	40 NM	–79 dBm	Améliorée	Position en vol Position à la surface Vitesse de vol Identification et classe de l'aéronef État de l'aéronef sur squitter long État opérationnel de l'aéronef Réservé – État et situation de la cible
A3 (capacité étendue)	90 NM	-84 dBm (et -87 dBm avec probabilité de réception de 15 % - voir Note 1)	Améliorée	Position en vol Position à la surface Vitesse de vol Identification et classe de l'aéronef État de l'aéronef sur squitter long État opérationnel de l'aéronef Réservé – État et situation de la cible

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date

Page 8 de 14

Janvier 2016

Note.— Des installations à squitter long mode S de classes d'équipement différentes sont possibles. Les caractéristiques du récepteur d'une classe d'équipement donnée sont censées être appropriées pour prendre en charge le niveau requis de capacité opérationnelle. Les classes d'équipement A0 à A3 s'appliquent aux installations embarquées étendues mode S qui intègrent une fonction d'émission (ADS émission) et une fonction de réception (ADS-B réception) de squitters longs mode S. Les classes d'équipement B0 à B3 s'appliquent aux installations étendues mode S fonctionnant en émission seulement (ADS-B émission) et comprennent les classes d'équipement applicables aux aéronefs, aux véhicules de surface et aux obstacles fixes. Les classes d'équipement C1 à C3 s'appliquent aux systèmes sol de réception de squitters longs mode S.

5.2.2 Fonction d'échange de messages

- 5.2.2.1 La fonction d'échange de messages inclue l'antenne de réception 1 090 MHz et les sousfonctions (récepteur/démodulateur/décodeur/tampon de données) de l'équipement radio.
- 5.2.2.2 Caractéristiques fonctionnelles de l'échange de messages. Le système embarqué de réception de squitters longs mode S doit assurer la réception et le décodage de tous les messages sur squitter long indiqués au Tableau 5-3. Le système sol de réception de squitters longs ADS-B doit assurer, comme minimum, la réception et le décodage de tous les types de message sur squitter long qui contiennent des renseignements nécessaires à la production des types de compte rendu ADS-B dont les applications sol ATM clients ont besoin.
- 5.2.2.3 Performances requises de la fonction de réception des messages. Les récepteurs/démodulateurs/décodeurs embarqués de squitters longs mode S doivent utiliser la technique de réception et avoir le niveau minimal de déclenchement (MTL) qui sont indiqués au Tableau 5-3, selon la classe de récepteur embarqué. La technique de réception et le MTL du récepteur sol de squitters longs doivent être choisis de façon à assurer les performances de réception (à savoir portée et cadences de mise à jour) répondant aux besoins des applications sol ATM clients.
- 5.2.2.4 Techniques de réception améliorée. Les systèmes embarqués de réception des classes A1, A2 et A3 doivent avoir les caractéristiques ci-après afin d'offrir une meilleure probabilité de réception des squitters longs mode S en présence de fruit modes A/C chevauchant multiple et/ou de fruit mode S chevauchant plus fort, par rapport à la technique de réception standard exigée pour les systèmes embarqués de réception de classe A0 :
 - a) détection de préambule de squitter long mode S améliorée ;
 - b) détection et correction d'erreur renforcées ;
 - c) techniques de déclaration de bit et de niveau de confiance améliorées appliquées aux classes de récepteur embarqué suivantes :
 - classe A1 performance équivalente ou supérieure à l'utilisation de la technique fondée sur le centre de l'amplitude;
 - 2) classe A2 performance équivalente ou supérieure à l'utilisation de la technique de base à « échantillons d'amplitude multiples », dans laquelle au moins 8 échantillons sont pris pour chaque position de bit mode S et utilisés dans le processus de décision;
 - 3) classe A3 performance équivalente ou supérieure à l'utilisation de la technique de base à « échantillons d'amplitude multiples », dans laquelle au moins 10 échantillons sont pris pour chaque position de bit mode S et utilisés dans le processus de décision.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date

Page 9 de 14

Janvier 2016

Note 1.— Les techniques de réception améliorée indiquées ci-dessus sont décrites à l'Appendice I des documents DO-260B de la RTCA et ED-102A de l'EUROCAE.

- Note 2.— Les performances que chacune des techniques de réception améliorée ci-dessus assure en environnement de fruit élevé (à savoir fruit modes A/C chevauchant multiple) devraient en principe être au moins équivalentes à celles que l'on obtient au moyen des techniques décrites à l'Appendice I des documents DO-260B de la RTCA et ED-102A de l'EUROCAE.
- Note 3.— On estime approprié que les systèmes sol de réception de squitters longs utilisent des techniques de réception améliorée équivalentes à celles qui sont spécifiées pour les systèmes embarqués de réception des classes A2 ou A3.

5.2.3 Fonction d'assembleur de compte rendu

- 5.2.3.1 La fonction d'assembleur de compte rendu comprend les sous-fonctions de décodage des messages, d'assemblage de compte rendu et d'interface de sortie.
- 5.2.3.2 Lorsqu'un message sur squitter long est reçu, le message doit être décodé, et le ou les comptes rendus ADS-B applicables des types indiqués au § 5.2.3.3 doivent être produits en moins de 0,5 s.
- Note 1.— Deux configurations de système embarqué de réception de squitters longs, qui comprennent la partie réception de la fonction d'échange de messages ADS-B et la fonction d'assemblage de compte rendu ADS-B, sont permises :
 - a) les systèmes de réception de squitters longs de type I reçoivent les messages ADS-B et produisent des sous-ensembles de comptes rendus ADS-B spécifiques à des applications. Ces systèmes sont adaptés aux applications clients particulières qui utilisent les comptes rendus ADS-B. En outre, ils peuvent être contrôlés par une entité externe afin de produire, en fonction de l'installation, des sousensembles des comptes rendus qu'ils sont capables de générer;
 - b) les systèmes de réception de squitters longs de type II reçoivent les messages ADS-B et sont capables de produire des comptes rendus ADS-B complets compte tenu de la classe d'équipement.
 Ils peuvent être contrôlés par une entité externe afin de produire, en fonction de l'installation, des sous-ensembles des comptes rendus qu'ils sont capables de générer.
- Note 2.— Les systèmes sol de réception de squitters longs reçoivent des messages ADS-B et produisent des sous-ensembles de comptes rendus ADS-B spécifiques à des applications ou des comptes rendus ADS-B complets fondés sur les besoins du prestataire de services au sol, y compris les applications clients à prendre en charge.
- Note 3.— La fonction de réception de messages sur squitter long peut être assurée par un matériel distinct de celui qui assure la fonction d'assemblage de compte rendu.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date

Page 10 de 14 1 Janvier 2016

5.2.3.3 TYPES DE COMPTE RENDU ADS-B

- Note 1.— Le compte rendu ADS-B désigne une restructuration des données des messages ADS-B reçus au moyen de squitters longs mode S en divers comptes rendus qui peuvent être utilisés directement par un ensemble d'applications clients. Cinq types de compte rendu ADS-B destinés à des applications clients sont définis dans les paragraphes ci-après. Des renseignements supplémentaires sur le contenu des comptes rendus ADS-B et sur la mise en correspondance entre les messages sur squitter long et les comptes rendus ADS-B figurent dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) et les documents DO-260B de la RTCA et ED-102A de l'EUROCAE.
- Note 2.— L'utilisation d'une source de temps de précision (p. ex. temps mesuré UTC GNSS) ou de nonprécision (p. ex. horloge interne du système de réception) comme base pour l'heure d'application indiquée est traitée au § 5.2.3.5.
- 5.2.3.3.1 Compte rendu de vecteur d'état. Le compte rendu de vecteur d'état doit contenir l'heure d'application, des renseignements sur l'état cinématique actuel d'un aéronef ou d'un véhicule (p. ex. position, vitesse), ainsi qu'une mesure de l'intégrité des données de navigation, sur la base de l'information reçue dans les messages sur squitter long de position en vol ou à la surface, de vitesse de vol, d'identification et de classe d'aéronef, d'état opérationnel de l'aéronef et d'état et de la situation de la cible. Étant donné que des messages distincts sont utilisés pour la position et la vitesse, l'heure d'application doit être communiquée séparément pour les paramètres de compte rendu concernant la position et la vitesse. En outre, quand il contient une information de position estimative et/ou de vitesse estimative (à savoir non fondée sur un message contenant une information de position ou de vitesse actualisée), le compte rendu de vecteur d'état doit indiquer une heure d'application pour cette information.
- Note.— Les exigences précises relatives à l'adaptation de ce type de compte rendu peuvent varier selon les besoins des applications clients de chaque participant (au sol ou embarqué). Des quatre comptes rendus ADS-B, le compte rendu de vecteur d'état est celui qui contient les données les plus dynamiques. Pour les applications considérées, le vecteur d'état doit donc être fréquemment actualisé pour répondre aux besoins de précision correspondant à la dynamique opérationnelle type des mouvements d'aéronefs en vol et de véhicules circulant à la surface.
- 5.2.3.3.2 Compte rendu d'état de mode. Le compte rendu d'état de mode doit contenir l'heure d'application et des renseignements opérationnels en vigueur concernant le participant émetteur, notamment l'adresse de l'aéronef/du véhicule, l'indicatif d'appel, le numéro de version de l'ADS-B, la longueur et la largeur de l'aéronef/du véhicule, des renseignements sur la qualité du vecteur d'état et d'autres éléments fondés sur l'information reçue dans les messages sur squitter long d'état opérationnel de l'aéronef, d'état et de situation de la cible, d'identification et de classe d'aéronef, de vitesse de vol et de situation de l'aéronef. Chaque fois qu'un compte rendu d'état de mode est produit, la fonction d'assembleur de compte rendu doit actualiser l'heure d'application du compte rendu. Les paramètres pour lesquels des données valides ne sont pas disponibles doivent être signalés comme étant invalides ou omis du compte rendu d'état de mode.
- Note 1.— Les exigences précises relatives à l'adaptation de ce type de compte rendu peuvent varier selon les besoins des applications clients de chaque participant (au sol ou embarqué).
- Note 2.— L'âge des renseignements communiqués dans les divers éléments de données d'un compte rendu d'état de mode peut varier du fait qu'ils ont été reçus à des moments différents dans des messages sur squitter long différents.
- 5.2.3.3.3 Compte rendu de vitesse indiquée air. Des comptes rendus de vitesse indiquée air doivent être produits lorsque des renseignements sur ce paramètre sont reçus dans des messages de vitesse de vol sur squitter long. Un compte rendu de vitesse indiquée air doit contenir l'heure d'application et des renseignements sur la vitesse aérodynamique et le cap. Seules certaines classes de systèmes de réception de squitters longs, définies au § 5.2.3.5, doivent produire des comptes rendus de vitesse indiquée air. Chaque fois qu'un compte rendu d'état de mode individuel est produit, la fonction d'assemblage de compte rendu

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date

Page 11 de 14

Janvier 2016

doit actualiser l'heure d'application du compte rendu.

- Note 1.— Le compte rendu de vitesse indiquée air contient des renseignements sur la vitesse reçus dans des messages de vitesse de vol ainsi que des renseignements supplémentaires reçus dans des messages d'identification et de classe d'aéronef sur squitter long. Il n'est pas produit de compte rendu de vitesse indiquée air lorsque des renseignements sur la vitesse indiquée sol sont reçus dans des messages de vitesse de vol sur squitter long.
- Note 2.— Les exigences précises relatives à l'adaptation de ce type de compte rendu peuvent varier selon les besoins des applications clients de chaque participant (au sol ou embarqué).
- 5.2.3.3.4 Compte rendu d'avis de résolution (RA). Le compte rendu de RA doit contenir l'heure d'application et la teneur d'un avis de résolution (RA) ACAS en vigueur reçue dans un message sur squitter long de type=28 et de sous-type=2.
- Note.— Le compte rendu de RA est destiné à être produit par les sous-systèmes sol de réception seulement lorsqu'ils prennent en charge une ou des applications clients ADS-B au sol nécessitant les renseignements RA en vigueur. Un compte rendu de RA sera en principe produit chaque fois qu'un message sur squitter long de type=28, sous-type=2 sera reçu.

5.2.3.3.5 COMPTE RENDU D'ETAT CIBLE

Note.— Le compte rendu d'état de la cible sera produit lorsque des renseignements seront reçus dans des messages d'état et de situation de la cible, avec des renseignements supplémentaires figurant dans les messages d'identification et de type d'aéronef sur squitter long. Le message d'état et de situation de la cible est défini dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871). Les exigences précises relatives à l'adaptation de ce type de compte rendu peuvent varier selon les besoins des applications clients de chaque participant (au sol ou embarqué).

5.2.3.4 TYPES DE COMPTE RENDU TIS-B [Non applicable]

5.2.3.5 HEURE D'APPLICATION DU COMPTE RENDU

Le système de réception doit utiliser une source locale de temps de référence comme base pour l'indication de l'heure d'application, comme il est défini pour chaque type de compte rendu ADS-B (voir § 5.2.3.3).

- 5.2.3.5.1 Référence de temps de précision. Les systèmes de réception destinés à produire des comptes rendus ADS-B fondés sur la réception des messages de position à la surface, des messages de position en vol et/ou de messages TIS-B doivent utiliser le temps mesuré UTC GNSS pour l'établissement de l'heure d'application du compte rendu dans les cas ci-après de messages reçus :
 - a) messages ADS-B version zéro (0), comme il est défini au § 3.1.2.8.6.2, lorsque la catégorie d'incertitude de navigation (NUC) est 8 ou 9 ; ou
 - b) messages ADS-B version un (1) ou version deux (2), comme il est défini aux § 3.1.2.8.6.2 et 3.1.2.8.7, respectivement, lorsque la catégorie d'intégrité de navigation (NIC) est 10 ou 11.

La plage des données de temps UTC mesuré doit $\,$ être d'au moins 300 s, et leur résolution, de 0,0078125 (1/128) s.

5.2.3.5.2 REFERENCE DE TEMPS LOCALE DE NON-PRECISION

5.2.3.5.2.1 Les systèmes de réception qui ne sont pas destinés à produire des comptes rendus ADS-B fondés sur la réception de messages ADS-B répondant aux critères NUC ou NIC indiqués au § 5.2.3.5.1 peuvent utiliser une source de temps de non-précision. En pareils cas, lorsqu'il n'y a pas de source de temps de précision qui convienne, le système de réception doit établir une horloge interne appropriée ou un compteur à cycle maximal ou temps de comptage de 20 ms. Le cycle ou le temps de comptage établi doit avoir une plage d'au

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date

Page 12 de 14 1

Janvier 2016

moins 300 s et une résolution de 0,0078125 (1/128) s.

Note.— L'emploi d'une référence de temps de non-précision décrit ci-dessus est destiné à permettre à l'heure d'application du compte rendu de correspondre avec exactitude aux intervalles de temps applicables aux comptes rendus dans une séquence. Par exemple, l'intervalle de temps applicable entre des comptes rendus de vecteur d'état pourrait être déterminé avec précision par une application client, même si le temps absolu (p. ex. temps UTC mesuré) n'était pas indiqué dans le compte rendu.

5.2.3.6 COMPTES RENDUS REQUIS

- 5.2.3.6.1 Comptes rendus requis des systèmes embarqués de réception de squitters longs mode S de type I. Comme minimum, la fonction d'assembleur de compte rendu associée aux systèmes de réception de squitters longs mode S de type I, fonction qui est définie au § 5.2.3, doit prendre en charge le sous-ensemble de comptes rendus ADS-B et les paramètres de compte rendu qui sont nécessaires aux applications clients spécifiques desservies par ces systèmes.
- 5.2.3.6.2 Comptes rendus requis des systèmes embarqués de réception de squitters longs mode S de type II. La fonction d'assembleur de compte rendu associée aux systèmes de réception de type II, fonction qui est définie au § 5.2.3, doit produire des comptes rendus ADS-B selon la classe du système de réception, comme il est indiqué au Tableau 5-4, lorsque les messages ADS-B nécessaires sont reçus.
- 5.2.3.6.3 Comptes rendus requis des systèmes sol de réception de squitters longs mode S. Comme minimum, la fonction d'assembleur de compte rendu associée aux systèmes sol de réception de squitters longs mode S, fonction qui est définie au § 5.2.3, doit prendre en charge le sous-ensemble de comptes rendus ADS-B et les paramètres de compte rendu qui sont nécessaires aux applications clients spécifiques desservies par ces systèmes.

5.2.4 Interopérabilité

Le système de réception de squitters longs mode S doit être interopérable avec les différentes versions des formats de message ADS-B sur squitter long.

Note 1.— Toutes les versions ADS-B définies et les formats de messages correspondants figurent dans les Dispositions techniques relatives aux services et au squitter long mode S (Doc 9871) et sont identifiées par un numéro de version.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date

Page 13 de 14 1 Janvier 2016

Note 2.— Les formats de messages ADS-B sont compatibles avec les versions précédentes. Un récepteur de squitter long peut reconnaître et décoder les signaux de sa propre version ainsi que les formats de message de versions inférieures. Cependant, le récepteur peut, selon ses possibilités, décoder la portion de messages reçus d'un transpondeur d'une version supérieure.

Tableau 5-4. Comptes rendus requis des systèmes embarqués de réception de squitters longs mode S

Classe de récepteur	Comptes rendus ADS-B exigés (minimum)
A0 (VFR de base)	Compte rendu de vecteur d'état ADS-B (§5.2.3.3.1) et Compte rendu d'état de mode ADS-B (§5.2.3.3.2)
A1 (IFR de base)	Compte rendu de vecteur d'état ADS-B (§5.2.3.3.1) et Compte rendu d'état de mode ADS-B (§5.2.3.3.2) et Compte rendu de vitesse indiquée air (ARV) ADS-B (§5.2.3.3.3)
A2 (IFR amélioré)	Compte rendu de vecteur d'état ADS-B (§5.2.3.3.1) et Compte rendu d'état de mode ADS-B (§5.2.3.3.2) et Compte rendu ARV ADS-B (§5.2.3.3.3) et Compte rendu d'état de la cible ADS-B (§5.2.3.3.5)
A3 (capacité étendue)	Compte rendu de vecteur d'état ADS-B (§5.2.3.3.1) et Compte rendu d'état de mode ADS-B (§5.2.3.3.2) et Compte rendu ARV ADS-B (§5.2.3.3.3) et Compte rendu d'état de la cible ADS-B (§5.2.3.3.5)

5.2.4.1 DECODAGE INITIAL DES MESSAGES

Lors de l'acquisition d'une nouvelle cible ADS-B, le système de réception de squitters longs mode S doit appliquer initialement les dispositions de décodage concernant les messages ADS-B version 0 (zéro) tant qu'il ne reçoit pas de message d'état opérationnel de l'aéronef indiquant qu'un format de message d'une version supérieure est utilisé.

5.2.4.2 APPLICATION DU NUMERO DE VERSION

Le système de réception de squitters longs mode S doit décoder l'information relative au numéro de version contenue dans le message d'état opérationnel de l'aéronef et appliquer les règles de décodage correspondant à la version indiquée, jusqu'à la version la plus récente prise en charge par le système récepteur, pour décoder les messages ADS-B sur squitter long suivants provenant de l'aéronef ou du véhicule concerné.

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 5 Edition : Date Page 14 de 14

Janvier 2016

5.2.4.3 TRAITEMENT DES SOUS-CHAMPS DE MESSAGE RESERVES

Le système de réception de squitters longs mode S ne doit pas tenir compte du contenu des sous-champs de message définis comme étant réservés.

Note.— Cette disposition favorise l'interopérabilité entre les versions de message en permettant la définition de paramètres supplémentaires dont les versions antérieures de récepteur ne tiendront pas compte mais qui seront correctement décodés par les nouvelles versions de récepteur.

RAS 10 TELECOMMUNICATIONS AÉRONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 6 Edition : Date Page 1 de 1

Janvier 2016

CHAPITRE 6. Systèmes de multilatération [Réservé]

RAS 10

TELECOMMUNICATIONS AERONAUTIQUES

Volume IV

Systèmes de surveillance et anticollision

Chapitre 7 Edition : Date

Page 1 de 2

Janvier 2016

CHAPITRE 7. SPECIFICATIONS TECHNIQUES POUR LES APPLICATIONS DE SURVEILLANCE EMBARQUEE

- Note 1.— Les applications de surveillance embarquée sont basées sur la réception et l'utilisation par des aéronefs d'informations de messages ADS-B émis par d'autres aéronefs/véhicules ou par des stations sol. La capacité d'un aéronef de recevoir et d'utiliser les informations des messages ADS-B/TIS-B est la fonction ADS-B/TIS-B réception.
- Note 2.— Les premières applications de surveillance embarquée utilisent des messages ADS-B sur squitter long 1 090 MHz pour assurer la conscience de la situation à bord (ATSA) et devraient en principe comprendre les « procédures en sillage » et la « séparation visuelle améliorée en approche ».
- Note 3.— Les documents DO-289 and DO-312 de la RTCA contiennent une description détaillée des applications mentionnées plus haut.

7.1 SPECIFICATIONS GENERALES

7.1.1 Fonctions de données de trafic

Note.— L'aéronef qui émet des messages ADS-B utilisés par d'autres aéronefs pour les applications de surveillance embarquée s'appelle l'aéronef de référence.

7.1.1.1 IDENTIFICATION DE L'AERONEF DE REFERENCE

7.1.1.1.1 Le système doit assurer une fonction permettant d'identifier sans ambiguïté chaque aéronef de référence utilisé par l'application.

7.1.1.2 POURSUITE DE L'AERONEF DE REFERENCE

7.1.1.2.1 Le système doit assurer une fonction de suivi des mouvements et du comportement de chaque aéronef de référence utilisé par l'application.

7.1.1.3 TRAJECTOIRE DE L'AERONEF DE REFERENCE

7.1.1.3.1 Le système peut assurer une fonction de calcul pour prédire la position future d'un aéronef de référence au-delà d'une simple extrapolation.

Note.— Il est prévu que cette fonction sera requise dans les applications futures

7.1.2 Affichage des données de circulation

- Note.— Les dispositions de la présente section s'appliquent aux cas où les pistes produites par l'ACAS et par la réception de messages ADS-B/TIS-B réception sont présentées sur un seul affichage.
 - 7.1.2.1 Le système ne doit afficher qu'une seule piste pour chaque aéronef sur un affichage donné.
- Note.— Cette spécification a pour but de faire en sorte que les pistes établies par l'ACAS et l'ADS-B/TIS-B réception soient adéquatement corrélées et mutuellement validées avant d'être affichées.
- 7.1.2.2 Lorsqu'il est déterminé qu'une piste produite par l'ADS-B/TIS-B réception et une piste produite par l'ACAS appartiennent au même aéronef, la piste produite par l'ADS-B/TIS-B réception doit être affichée.
- Note.— Lorsque les distances sont rapprochées, il est possible que la piste produite par l'ACAS ait une meilleure précision que celle qui est produite par l'ADS-B/TIS-B réception. La spécification ci-dessus assure la

RAS 10 TELECOMMUNICATIONS AERONAUTIQUES Volume IV

Systèmes de surveillance et anticollision

Chapitre 7 Edition : Date

Page 2 de 2 1 Janvier 2016

continuité de l'affichage.

7.1.2.3 L'affichage des pistes doit être conforme aux spécifications relatives à l'affichage de trafic de l'ACAS.

Note.— La section 4.3 du Chapitre 4 traite du code couleurs et de la lisibilité de l'affichage.